
M a k e r s o f B e r k e l e y D B M a k e r s o f B e r k e l e y D B

Berkeley DB For Java
Collections Tutorial

.

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please write to <support@sleepycat.com>.

Published 9/22/2004

http://www.sleepycat.com/download/oslicense.html

Table of Contents
Preface .. iv

Conventions Used in this Book ... iv
1. Introduction ... 1

Features ... 1
Developing a Sleepycat Collections Application ... 2
Tutorial Introduction .. 3

2. The Basic Program .. 6
Defining Serialized Key and Value Classes ... 6
Opening and Closing the Database Environment 11
Opening and Closing the Class Catalog ... 13
Opening and Closing Databases .. 15
Creating Bindings and Collections ... 17
Implementing the Main Program .. 20
Using Transactions ... 23
Adding Database Items .. 25
Retrieving Database Items .. 28
Handling Exceptions ... 30

3. Using Secondary Indices .. 32
Opening Secondary Key Indices .. 32
More Secondary Key Indices .. 36
Creating Indexed Collections ... 39
Retrieving Items by Index Key ... 41

4. Using Entity Classes ... 45
Defining Entity Classes .. 45
Creating Entity Bindings .. 49
Creating Collections with Entity Bindings .. 52
Using Entities with Collections ... 53

5. Using Tuples .. 58
Using the Tuple Format ... 58
Using Tuples with Key Creators .. 59
Creating Tuple Key Bindings ... 61
Creating Tuple-Serial Entity Bindings ... 63
Using Sorted Collections .. 66

6. Using Serializable Entities ... 68
Using Transient Fields in an Entity Class ... 68
Using Transient Fields in an Entity Binding .. 72
Removing the Redundant Value Classes .. 74

7. Summary .. 76
A. API Notes and Details ... 77

Using Data Bindings .. 77
Selecting Binding Formats ... 78
Record Number Bindings .. 79
Selecting Data Bindings ... 79
Implementing Bindings ... 80
Using Bindings .. 80
Secondary Key Creators .. 80

Page iiDB Collections9/22/2004

Using the Sleepycat Java Collections API .. 81
Using Transactions .. 81
Transaction Rollback .. 82
Selecting Access Methods ... 83
Access Method Restrictions .. 83

Using Stored Collections .. 84
Stored Collection and Access Methods ... 84
Stored Collections Versus Standard Java Collections 85
Other Stored Collection Characteristics ... 87
Why Java Collections for Berkeley DB .. 88

Serialized Object Storage ... 89

Page iiiDB Collections9/22/2004

Preface
Welcome to the Berkeley DB (DB) Collections API. This document provides a tutorial that
introduces the collections API. The goal of this document is to provide you with an efficient
mechanism with which you can quickly become efficient with this API. As such, this
document is intended for Java developers and senior software architects who are looking
for transactionally-protected backing of their Java collections. No prior experience with
Sleepycat technologies is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object."

Variable or non-literal text is presented in italics. For example: "Go to your
DB_INSTALLATION_HOME directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnvironment;

In situations in this book, programming examples are updated from one chapter to the
next in this book. When this occurs, the new code is presented in monospaced bold font.
For example:

import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

Page ivDB Collections9/22/2004

Chapter 1. Introduction
The Sleepycat Java Collections API is a Java framework that extends the well known Java
Collections [http://java.sun.com/j2se/1.3/docs/guide/collections/] design pattern such
that collections can now be stored, updated and queried in a transactional manner. The
Sleepycat Java Collections API is a layer on top of DB.

Together the Sleepycat Java Collections API and Berkeley DB provide an embedded data
management solution with all the benefits of a full transactional storage and the simplicity
of a well known Java API. Java programmers who need fast, scalable, transactional data
management for their projects can quickly adopt and deploy the Sleepycat Java Collections
API with confidence.

This framework was first known as Greybird DB [http://greybird-db.sourceforge.net/]
written by Mark Hayes. Sleepycat Software has collaborated with Mark to permanently
incorporate his excellent work into our distribution and support it as an ongoing part of
Berkeley DB and Berkeley DB Java Edition. The repository of source code that remains at
Sourceforge at version 0.9.0 is considered the last version before incorporation and will
remain intact but will not be updated to reflect changes made as part of Berkeley DB or
Berkeley DB Java Edition.

Features

Berkeley DB has always provided a Java API which can be roughly described as a map and
cursor interface, where the keys and values are represented as byte arrays. This API is a
Java (JNI) interface to the C API and it closely modeled the Berkeley DB C API's interface.
The Sleepycat Java Collections API is a layer on top of that thin JNI mapping of the C API
to Berkeley DB. It adds significant new functionality in several ways.

• An implementation of the Java Collections interfaces (Map, SortedMap, Set, SortedSet,
List and Iterator) is provided.

• Transactions are supported using the conventional Java transaction-per-thread model,
where the current transaction is implicitly associated with the current thread.

• Transaction runner utilities are provided that automatically perform transaction retry
and exception handling.

• Keys and values are represented as Java objects rather than byte arrays. Bindings are
used to map between Java objects and the stored byte arrays.

• The tuple data format is provided as the simplest data representation, and is useful
for keys as well as simple compact values.

• The serial data format is provided for storing arbitrary Java objects without writing
custom binding code. Java serialization is extended to store the class descriptions
separately, making the data records much more compact than with standard Java
serialization.

Page 1DB Collections9/22/2004

http://java.sun.com/j2se/1.3/docs/guide/collections/
http://java.sun.com/j2se/1.3/docs/guide/collections/
http://greybird-db.sourceforge.net/

• Custom data formats and bindings can be easily added. XML data format and XML
bindings could easily be created using this feature, for example.

• The Sleepycat Java Collections API insulates the application from minor differences
in the use of the Berkeley DB Data Store, Concurrent Data Store, and Transactional
Data Store products. This allows for development with one and deployment with
another without significant changes to code.

Note that the Sleepycat Java Collections API does not support caching of programming
language objects nor does it keep track of their stored status. This is in contrast to
"persistent object" approaches such as those defined by ODMG [http://www.odmg.org/]
and JDO (JSR 12). Such approaches have benefits but also require sophisticated object
caching. For simplicity the Sleepycat Java Collections API treats data objects by value,
not by reference, and does not perform object caching of any kind. Since the Sleepycat
Java Collections API is a thin layer, its reliability and performance characteristics are
roughly equivalent to those of Berkeley DB, and database tuning is accomplished in the
same way as for any Berkeley DB database.

Developing a Sleepycat Collections Application

There are several important choices to make when developing an application using the
Sleepycat Java Collections API.

1. Choose the Berkeley DB Environment

Depending on your application's concurrency and transactional requirements, you
may choose one of the three Berkeley DB Environments: Data Store, Concurrent Data
Store, or Transactional Data Store. For details on creating and configuring the
environment, see the Berkeley DB Programmer's Reference Guide.

2. Choose the Berkeley DB Access Method

For each Berkeley DB datastore, you may choose from any of the four Berkeley DB
access methods — BTREE, HASH, RECNO, or QUEUE — and a number of other database
options. Your choice depends on several factors such as whether you need ordered
keys, unique keys, record number access, and so forth. For more information on
access methods, see the Berkeley DB Programmer's Reference Guide.

3. Choose the Format for Keys and Values

For each database you may choose a binding format for the keys and values. For
example, the tuple format is useful for keys because it has a deterministic sort order.
The serial format is useful for values if you want to store arbitrary Java objects. In
some cases a custom format may be appropriate. For details on choosing a binding
format see Using Data Bindings (page 77).

4. Choose the Binding for Keys and Values

With the serial data format you do not have to create a binding for each Java class
that is stored since Java serialization is used. But for other formats a binding must

Page 2DB Collections9/22/2004

Developing a Sleepycat
Collections Application

http://www.odmg.org/

be defined that translates between stored byte arrays and Java objects. For details
see Using Data Bindings (page 77).

5. Choose Secondary Indices

Any database that has unique keys may have any number of secondary indices. A
secondary index has keys that are derived from data values in the primary database.
This allows lookup and iteration of objects in the database by its index keys. For each
index you must define how the index keys are derived from the data values using a
SecondaryKeyCreator. For details see the SecondaryDatabase, SecondaryConfig and
SecondaryKeyCreator classes.

6. Choose the Collection Interface for each Database

The standard Java Collection interfaces are used for accessing databases and secondary
indices. The Map and Set interfaces may be used for any type of database. The Iterator
interface is used through the Set interfaces. For more information on the collection
interfaces see Using Stored Collections (page 84).

Any number of bindings and collections may be created for the same database. This allows
multiple views of the same stored data. For example, a data store may be viewed as a
Map of keys to values, a Set of keys, or a Collection of values. String values, for example,
may be used with the built-in binding to the String class, or with a custom binding to
another class that represents the string values differently.

It is sometimes desirable to use a Java class that encapsulates both a data key and a data
value. For example, a Part object might contain both the part number (key) and the part
name (value). Using the Sleepycat Java Collections API this type of object is called an
"entity". An entity binding is used to translate between the Java object and the stored
data key and value. Entity bindings may be used with all Collection types.

Please be aware that the provided Sleepycat Java Collections API collection classes do
not conform completely to the interface contracts defined in the java.util package. For
example, all iterators must be explicitly closed and the size() method is not available.
The differences between the Sleepycat Java Collections API collections and the standard
Java collections are documented in Stored Collections Versus Standard Java Collections
(page 85).

Tutorial Introduction

Most of the remainder of this document illustrates the use of the Sleepycat Java Collections
API by presenting a tutorial that describes usage of the API. This tutorial builds a shipment
database, a familiar example from classic database texts.

The examples illustrate the following concepts of the Sleepycat Java Collections API:

• Object-to-data bindings

• The database environment

Page 3DB Collections9/22/2004

Tutorial Introduction

• Databases that contain key/value records

• Secondary index databases that contain index keys

• Java collections for accessing databases and indices

• Transactions used to commit or undo database changes

The examples build on each other, but at the same time the source code for each example
stands alone.

• The Basic Program (page 6)

• Using Secondary Indices (page 32)

• Using Entity Classes (page 45)

• Using Tuples (page 58)

• Using Serializable Entities (page 68)

The shipment database consists of three database stores: the part store, the supplier
store, and the shipment store. Each store contains a number of records, and each record
consists of a key and a value.

ValueKeyStore

Name, Color, Weight, CityPart NumberPart

Name, Status, CitySupplier NumberSupplier

QuantityPart Number, Supplier
Number

Shipment

In the example programs, Java classes containing the fields above are defined for the key
and value of each store: PartKey, PartData, SupplierKey, SupplierData, ShipmentKey and
ShipmentData. In addition, because the Part's Weight field is itself composed of two fields
— the weight value and the unit of measure — it is represented by a separate Weight class.
These classes will be defined in the first example program.

In general the Sleepycat Java Collections API uses bindings to describe how Java objects
are stored. A binding defines the stored data syntax and the mapping between a Java
object and the stored data. The example programs show how to create different types
of bindings, and explains the characteristics of each type.

The following tables show the record values that are used in all the example programs in
the tutorial.

Page 4DB Collections9/22/2004

Tutorial Introduction

CityWeightColorNameNumber

London12.0 gramsRedNutP1

Paris17.0 gramsGreenBoltP2

Rome17.0 gramsBlueScrewP3

London14.0 gramsRedScrewP4

Paris12.0 gramsBlueCamP5

London19.0 gramsRedCogP6

CityStatusNameNumber

London20SmithS1

Paris10JonesS2

Paris30BlakeS3

London20ClarkS4

Athens30AdamsS5

QuantitySupplier NumberPart Number

300S1P1

300S2P1

200S1P2

400S2P2

200S3P2

200S4P2

400S1P3

200S1P4

300S4P4

100S1P5

400S4P5

100S1P6

Page 5DB Collections9/22/2004

Tutorial Introduction

Chapter 2. The Basic Program
The Basic example is a minimal implementation of the shipment program. It writes and
reads the part, supplier and shipment databases.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Serialized Key and Value Classes

The key and value classes for each type of shipment record — Parts, Suppliers and
Shipments — are defined as ordinary Java classes. In this example the serialized form of
the key and value objects is stored directly in the database. Therefore these classes must
implement the standard Java java.io.Serializable interface. A compact form of Java
serialization is used that does not duplicate the class description in each record. Instead
the class descriptions are stored in the class catalog store, which is described in the next
section. But in all other respects, standard Java serialization is used.

An important point is that instances of these classes are passed and returned by value,
not by reference, when they are stored and retrieved from the database. This means that
changing a key or value object does not automatically change the database. The object
must be explicitly stored in the database after changing it. To emphasize this point the
key and value classes defined here have no field setter methods. Setter methods can be
defined, but it is important to remember that calling a setter method will not cause the
change to be stored in the database. How to store and retrieve objects in the database
will be described later.

Each key and value class contains a toString method that is used to output the contents
of the object in the example program. This is meant for illustration only and is not required
for database objects in general.

Notice that the key and value classes defined below do not contain any references to
com.sleepycat packages. An important characteristic of these classes is that they are
independent of the database. Therefore, they may be easily used in other contexts and
may be defined in a way that is compatible with other tools and libraries.

The PartKey class contains only the Part's Number field.

Note that PartKey (as well as SupplierKey below) contain only a single String field. Instead
of defining a specific class for each type of key, the String class by itself could have been
used. Specific key classes were used to illustrate strong typing and for consistency in the
example. The use of a plain String as an index key is illustrated in the next example
program. It is up to the developer to use either primitive Java classes such as String and
Integer, or strongly typed classes. When there is the possibility that fields will be added
later to a key or value, a specific class should be used.

Page 6DB Collections9/22/2004

import java.io.Serializable;

public class PartKey implements Serializable
{
 private String number;

 public PartKey(String number) {
 this.number = number;
 }

 public final String getNumber() {
 return number;
 }

 public String toString() {
 return "[PartKey: number=" + number + ']';
 }
}

The PartData class contains the Part's Name, Color, Weight and City fields.

import java.io.Serializable;

public class PartData implements Serializable
{
 private String name;
 private String color;
 private Weight weight;
 private String city;

 public PartData(String name, String color, Weight weight, String city)
 {
 this.name = name;
 this.color = color;
 this.weight = weight;
 this.city = city;
 }

 public final String getName()
 {
 return name;
 }

 public final String getColor()
 {
 return color;
 }

 public final Weight getWeight()

Page 7DB Collections9/22/2004

Defining Serialized Key and Value
Classes

 {
 return weight;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "[PartData: name=" + name +
 " color=" + color +
 " weight=" + weight +
 " city=" + city + ']';
 }
}

The Weight class is also defined here, and is used as the type of the Part's Weight field.
Just as in standard Java serialization, nothing special is needed to store nested objects
as long as they are all Serializable.

import java.io.Serializable;

public class Weight implements Serializable
{
 public final static String GRAMS = "grams";
 public final static String OUNCES = "ounces";

 private double amount;
 private String units;

 public Weight(double amount, String units)
 {
 this.amount = amount;
 this.units = units;
 }

 public final double getAmount()
 {
 return amount;
 }

 public final String getUnits()
 {
 return units;
 }

 public String toString()

Page 8DB Collections9/22/2004

Defining Serialized Key and Value
Classes

 {
 return "[" + amount + ' ' + units + ']';
 }
}

The SupplierKey class contains the Supplier's Number field.

import java.io.Serializable;

public class SupplierKey implements Serializable
{
 private String number;

 public SupplierKey(String number)
 {
 this.number = number;
 }

 public final String getNumber()
 {
 return number;
 }

 public String toString()
 {
 return "[SupplierKey: number=" + number + ']';
 }
}

The SupplierData class contains the Supplier's Name, Status and City fields.

import java.io.Serializable;

public class SupplierData implements Serializable
{
 private String name;
 private int status;
 private String city;

 public SupplierData(String name, int status, String city)
 {
 this.name = name;
 this.status = status;
 this.city = city;
 }

 public final String getName()
 {
 return name;
 }

Page 9DB Collections9/22/2004

Defining Serialized Key and Value
Classes

 public final int getStatus()
 {
 return status;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "[SupplierData: name=" + name +
 " status=" + status +
 " city=" + city + ']';
 }
}

The ShipmentKey class contains the keys of both the Part and Supplier.

import java.io.Serializable;

public class ShipmentKey implements Serializable
{
 private String partNumber;
 private String supplierNumber;

 public ShipmentKey(String partNumber, String supplierNumber)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 }

 public final String getPartNumber()
 {
 return partNumber;
 }

 public final String getSupplierNumber()
 {
 return supplierNumber;
 }

 public String toString()
 {
 return "[ShipmentKey: supplier=" + supplierNumber +
 " part=" + partNumber + ']';

Page 10DB Collections9/22/2004

Defining Serialized Key and Value
Classes

 }
}

The ShipmentData class contains only the Shipment's Quantity field. Like PartKey and
SupplierKey, ShipmentData contains only a single primitive field. Therefore the Integer
class could have been used instead of defining a specific value class.

import java.io.Serializable;

public class ShipmentData implements Serializable
{
 private int quantity;

 public ShipmentData(int quantity)
 {
 this.quantity = quantity;
 }

 public final int getQuantity()
 {
 return quantity;
 }

 public String toString()
 {
 return "[ShipmentData: quantity=" + quantity + ']';
 }
}

Opening and Closing the Database Environment

This section of the tutorial describes how to open and close the database environment.
The database environment manages resources (for example, memory, locks and
transactions) for any number of databases. A single environment instance is normally used
for all databases.

The SampleDatabase class is used to open and close the environment. It will also be used
in following sections to open and close the class catalog and other databases. Its
constructor is used to open the environment and its close() method is used to close the
environment. The skeleton for the SampleDatabase class follows.

import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;
import java.io.FileNotFoundException;

public class SampleDatabase
{
 private Environment env;

Page 11DB Collections9/22/2004

Opening and Closing the
Database Environment

 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 }

 public void close()
 throws DatabaseException
 {
 }
}

The first thing to notice is that the Environment class is in the com.sleepycat.db package,
not the com.sleepycat.collections package. The com.sleepycat.db package contains all
core Berkeley DB functionality. The com.sleepycat.collections package contains extended
functionality that is based on the Java Collections API. The collections package is layered
on top of the com.sleepycat.db package. Both packages are needed to create a complete
application based on the Sleepycat Java Collections API.

The following statements create an Environment object.

public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 System.out.println("Opening environment in: " + homeDirectory);

 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setTransactional(true);
 envConfig.setAllowCreate(true);
 envConfig.setInitializeCache(true);
 envConfig.setInitializeLocking(true);

 env = new Environment(new File(homeDirectory), envConfig);
 }

The EnvironmentConfig class is used to specify environment configuration parameters.
The first configuration option specified — setTransactional() — is set to true to create
an environment where transactional (and non-transactional) databases may be opened.
While non-transactional environments can also be created, the examples in this tutorial
use a transactional environment.

setAllowCreate() is set to true to specify that the environment's files will be created if
they don't already exist. If this parameter is not specified, an exception will be thrown
if the environment does not already exist. A similar parameter will be used later to cause
databases to be created if they don't exist.

When an Environment object is constructed, a home directory and the environment
configuration object are specified. The home directory is the location of the environment's
log files that store all database information.

Page 12DB Collections9/22/2004

Opening and Closing the
Database Environment

The following statement closes the environment. The environment should always be closed
when database work is completed to free allocated resources and to avoid having to run
recovery later. Closing the environment does not automatically close databases, so
databases should be closed explicitly before closing the environment.

 public void close()
 throws DatabaseException
 {
 env.close();
 }

The following getter method returns the environment for use by other classes in the
example program. The environment is used for opening databases and running transactions.

public class SampleDatabase
{
 ...
 public final Environment getEnvironment()
 {
 return env;
 }
 ...
}

Opening and Closing the Class Catalog

This section describes how to open and close the Java class catalog. The class catalog is
a specialized database store that contains the Java class descriptions of the serialized
objects that are stored in the database. The class descriptions are stored in the catalog
rather than storing them redundantly in each database record. A single class catalog per
environment must be opened whenever serialized objects will be stored in the database.

The SampleDatabase class is extended to open and close the class catalog. The following
additional imports and class members are needed.

import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.db.Database;
import com.sleepycat.db.DatabaseConfig;
import com.sleepycat.db.DatabaseType;
import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;
import java.io.FileNotFoundException;

...

public class SampleDatabase
{
 private Environment env;

Page 13DB Collections9/22/2004

Opening and Closing the Class
Catalog

 private static final String CLASS_CATALOG = "java_class_catalog";
 ...
 private StoredClassCatalog javaCatalog;
 ...
}

While the class catalog is itself a database, it contains metadata for other databases and
is therefore treated specially by the Sleepycat Java Collections API. The
StoredClassCatalog class encapsulates the catalog store and implements this special
behavior.

The following statements open the class catalog by creating a Database and a
StoredClassCatalog object. The catalog database is created if it doesn't already exist.

 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 dbConfig.setAllowCreate(true);
 dbConfig.setType(DatabaseType.BTREE);

 Database catalogDb = env.openDatabase(null, CLASS_CATALOG, null,
 dbConfig);

 javaCatalog = new StoredClassCatalog(catalogDb);
 ...
 }
 ...
 public final StoredClassCatalog getClassCatalog() {
 return javaCatalog;
 }

The DatabaseConfig class is used to specify configuration parameters when opening a
database. The first configuration option specified — setTransactional() — is set to true
to create a transactional database. While non-transactional databases can also be created,
the examples in this tutorial use transactional databases.

setAllowCreate() is set to true to specify that the database will be created if it doesn't
already exist. If this parameter is not specified, an exception will be thrown if the database
does not already exist.

setDatabaseType() identifies the database storage type or access method. For opening
a catalog database, the BTREE type is required. BTREE is the most commonly used database
type and in this tutorial is used for all databases.

The first parameter of the openDatabase() method is an optional transaction that is used
for creating a new database. If null is passed, auto-commit is used when creating a
database.

Page 14DB Collections9/22/2004

Opening and Closing the Class
Catalog

The second and third parameters of openDatabase() specify the filename and database
(sub-file) name o fthe database. The database name is optional and is null in this example.

The last parameter of openDatabase() specifies the database configuration object.

Lastly, the StoredClassCatalog object is created to manage the information in the class
catalog database. The StoredClassCatalog object will be used in the sections following
for creating serial bindings.

The getClassCatalog method returns the catalog object for use by other classes in the
example program.

When the environment is closed, the class catalog is closed also.

 public void close()
 throws DatabaseException
 {
 javaCatalog.close();
 env.close();
 }

The StoredClassCatalog.close() method simply closes the underlying class catalog
database and in fact the Database.close() method may be called instead, if desired. The
catalog database, and all other databases, must be closed before closing the environment.

Opening and Closing Databases

This section describes how to open and close the Part, Supplier and Shipment databases.
A database is a collection of records, each of which has a key and a value. The keys and
values are stored in a selected format, which defines the syntax of the stored data. Two
examples of formats are Java serialization format and tuple format. In a given database,
all keys have the same format and all values have the same format.

The SampleDatabase class is extended to open and close the three databases. The following
additional class members are needed.

public class SampleDatabase
{
 ...
 private static final String SUPPLIER_STORE = "supplier_store";
 private static final String PART_STORE = "part_store";
 private static final String SHIPMENT_STORE = "shipment_store";
 ...
 private Database supplierDb;
 private Database partDb;
 private Database shipmentDb;
 ...
}

For each database there is a database name constant and a Database object.

Page 15DB Collections9/22/2004

Opening and Closing Databases

The following statements open the three databases by constructing a Database object.

 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 dbConfig.setAllowCreate(true);
 dbConfig.setType(DatabaseType.BTREE);
 ...
 partDb = env.openDatabase(null, PART_STORE, null, dbConfig);
 supplierDb = env.openDatabase(null, SUPPLIER_STORE, null, dbConfig);
 shipmentDb = env.openDatabase(null, SHIPMENT_STORE, null, dbConfig);
 ...
 }

The database configuration object that was used previously for opening the catalog
database is reused for opening the three databases above. The databases are created if
they don't already exist. The parameters of the openDatabase() method were described
earlier when the class catalog database was opened.

The following statements close the three databases.

 public void close()
 throws DatabaseException
 {
 partDb.close();
 supplierDb.close();
 shipmentDb.close();
 javaCatalog.close();
 env.close();
 }

All databases, including the catalog database, must be closed before closing the
environment.

The following getter methods return the databases for use by other classes in the example
program.

public class SampleDatabase
{
 ...
 public final Database getPartDatabase()
 {
 return partDb;
 }

 public final Database getSupplierDatabase()

Page 16DB Collections9/22/2004

Opening and Closing Databases

 {
 return supplierDb;
 }

 public final Database getShipmentDatabase()
 {
 return shipmentDb;
 }
 ...
}

Creating Bindings and Collections

Bindings translate between stored records and Java objects. In this example, Java
serialization bindings are used. Serial bindings are the simplest type of bindings because
no mapping of fields or type conversion is needed. Tuple bindings — which are more
difficult to create than serial bindings but have some advantages — will be introduced
later in the Tuple example program.

Standard Java collections are used to access records in a database. Stored collections use
bindings transparently to convert the records to objects when they are retrieved from
the collection, and to convert the objects to records when they are stored in the collection.

An important characteristic of stored collections is that they do not perform object
caching. Every time an object is accessed via a collection it will be added to or retrieved
from the database, and the bindings will be invoked to convert the data. Objects are
therefore always passed and returned by value, not by reference. Because Berkeley DB
is an embedded database, efficient caching of stored raw record data is performed by
the database library.

The SampleViews class is used to create the bindings and collections. This class is separate
from the SampleDatabase class to illustrate the idea that a single set of stored data can
be accessed via multiple bindings and collections, or views. The skeleton for the
SampleViews class follows.

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.ClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.collections.StoredEntrySet;
import com.sleepycat.collections.StoredMap;
...

public class SampleViews
{
 private StoredMap partMap;
 private StoredMap supplierMap;
 private StoredMap shipmentMap;

 ...
 public SampleViews(SampleDatabase db)

Page 17DB Collections9/22/2004

Creating Bindings and Collections

 {
 }
}

A StoredMap field is used for each database. The StoredMap class implements the standard
Java Map interface, which has methods for obtaining a Set of keys, a Collection of values,
or a Set of Map.Entry key/value pairs. Because databases contain key/value pairs, any
Berkeley DB database may be represented as a Java map.

The following statements create the key and data bindings using the SerialBinding class.

 public SampleViews(SampleDatabase db)
 {
 ClassCatalog catalog = db.getClassCatalog();
 EntryBinding partKeyBinding =
 new SerialBinding(catalog, PartKey.class);
 EntryBinding partValueBinding =
 new SerialBinding(catalog, PartData.class);
 EntryBinding supplierKeyBinding =
 new SerialBinding(catalog, SupplierKey.class);
 EntryBinding supplierValueBinding =
 new SerialBinding(catalog, SupplierData.class);
 EntryBinding shipmentKeyBinding =
 new SerialBinding(catalog, ShipmentKey.class);
 EntryBinding shipmentValueBinding =
 new SerialBinding(catalog, ShipmentData.class);
 ...
 }

The first parameter of the SerialBinding constructor is the class catalog, and is used to
store the class descriptions of the serialized objects.

The second parameter is the base class for the serialized objects and is used for type
checking of the stored objects. If null or Object.class is specified, then any Java class
is allowed. Otherwise, all objects stored in that format must be instances of the specified
class or derived from the specified class. In the example, specific classes are used to
enable strong type checking.

The following statements create standard Java maps using the StoredMap class.

 public SampleViews(SampleDatabase db)
 {
 ...
 partMap =
 new StoredMap(db.getPartDatabase(),
 partKeyBinding, partValueBinding, true);
 supplierMap =
 new StoredMap(db.getSupplierDatabase(),
 supplierKeyBinding, supplierValueBinding, true);
 shipmentMap =

Page 18DB Collections9/22/2004

Creating Bindings and Collections

 new StoredMap(db.getShipmentDatabase(),
 shipmentKeyBinding, shipmentValueBinding, true);
 ...
 }

The first parameter of the StoredMap constructor is the database. In a StoredMap, the
database keys (the primary keys) are used as the map keys. The Index example shows
how to use secondary index keys as map keys.

The second and third parameters are the key and value bindings to use when storing and
retrieving objects via the map.

The fourth and last parameter specifies whether changes will be allowed via the collection.
If false is passed, the collection will be read-only.

The following getter methods return the stored maps for use by other classes in the
example program. Convenience methods for returning entry sets are also included.

public class SampleViews
{
 ...
 public final StoredMap getPartMap()
 {
 return partMap;
 }

 public final StoredMap getSupplierMap()
 {
 return supplierMap;
 }

 public final StoredMap getShipmentMap()
 {
 return shipmentMap;
 }

 public final StoredEntrySet getPartEntrySet()
 {
 return (StoredEntrySet) partMap.entrySet();
 }

 public final StoredEntrySet getSupplierEntrySet()
 {
 return (StoredEntrySet) supplierMap.entrySet();
 }

 public final StoredEntrySet getShipmentEntrySet()
 {
 return (StoredEntrySet) shipmentMap.entrySet();
 }

Page 19DB Collections9/22/2004

Creating Bindings and Collections

 ...
}

Note that StoredMap and StoredEntrySet are returned rather than just returning Map and
Set. Since StoredMap implements the Map interface and StoredEntrySet implements the
Set interface, you may ask why Map and Set were not returned directly.

StoredMap, StoredEntrySet, and other stored collection classes have a small number of
extra methods beyond those in the Java collection interfaces. The stored collection types
are therefore returned to avoid casting when using the extended methods. Normally,
however, only a Map or Set is needed, and may be used as follows.

 SampleDatabase sd = new SampleDatabase(new String("/home"));
 SampleViews views = new SampleViews(sd);
 Map partMap = views.getPartMap();
 Set supplierEntries = views.getSupplierEntrySet();

Implementing the Main Program

The main program opens the environment and databases, stores and retrieves objects
within a transaction, and finally closes the environment databases. This section describes
the main program shell, and the next section describes how to run transactions for storing
and retrieving objects.

The Sample class contains the main program. The skeleton for the Sample class follows.

import com.sleepycat.db.DatabaseException;
import java.io.FileNotFoundException;

public class Sample
{
 private SampleDatabase db;
 private SampleViews views;

 public static void main(String args)
 {
 }

 private Sample(String homeDir)
 throws DatabaseException, FileNotFoundException
 {
 }

 private void close()
 throws DatabaseException
 {
 }

 private void run()
 throws Exception

Page 20DB Collections9/22/2004

Implementing the Main Program

 {
 }
}

The main program uses the SampleDatabase and SampleViews classes that were described
in the preceding sections. The main method will create an instance of the Sample class,
and call its run() and close() methods.

The following statements parse the program's command line arguments.

 public static void main(String[] args)
 {
 System.out.println("\nRunning sample: " + Sample.class);
 String homeDir = "./tmp";
 for (int i = 0; i < args.length; i += 1)
 {
 String arg = args[i];
 if (args[i].equals("-h") && i < args.length - 1)
 {
 i += 1;
 homeDir = args[i];
 }
 else
 {
 System.err.println("Usage:\n java " +
 Sample.class.getName() +
 "\n [-h <home-directory>]");
 System.exit(2);
 }
 }
 ...
 }

The usage command is:

java com.sleepycat.examples.bdb.shipment.basic.Sample
 [-h <home-directory>]

The -h command is used to set the homeDir variable, which will later be passed to the
SampleDatabase() constructor. Normally all Berkeley DB programs should provide a way
to configure their database environment home directory.

The default for the home directory is ./tmp — the tmp subdirectory of the current directory
where the sample is run. The home directory must exist before running the sample. To
re-create the sample database from scratch, delete all files in the home directory before
running the sample.

The home directory was described previously in Opening and Closing the Database
Environment (page 11).

Page 21DB Collections9/22/2004

Implementing the Main Program

Of course, the command line arguments shown are only examples and a real-life application
may use different techniques for configuring these options.

The following statements create an instance of the Sample class and call its run() and
close() methods.

 public static void main(String args)
 {
 ...
 Sample sample = null;
 try
 {
 sample = new Sample(homeDir);
 sample.run();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 if (sample != null)
 {
 try
 {
 sample.close();
 }
 catch (Exception e)
 {
 System.err.println("Exception during database close:");
 e.printStackTrace();
 }
 }
 }
 }

The Sample() constructor will open the environment and databases, and the run() method
will run transactions for storing and retrieving objects. If either of these throws an
exception, then the program was unable to run and should normally terminate. (Transaction
retries are handled at a lower level and will be described later.) The first catch statement
handles such exceptions.

The finally statement is used to call the close() method since an attempt should always
be made to close the environment and databases cleanly. If an exception is thrown during
close and a prior exception occurred above, then the exception during close is likely a
side effect of the prior exception.

The Sample() constructor creates the SampleDatabase and SampleViews objects.

Page 22DB Collections9/22/2004

Implementing the Main Program

 private Sample(String homeDir)
 throws DatabaseException, FileNotFoundException
 {
 db = new SampleDatabase(homeDir);
 views = new SampleViews(db);
 }

Recall that creating the SampleDatabase object will open the environment and all
databases.

To close the database the Sample.close() method simply calls SampleDatabase.close().

 private void close()
 throws DatabaseException
 {
 db.close();
 }

The run() method is described in the next section.

Using Transactions

DB transactional applications have standard transactional characteristics: recoverability,
atomicity and integrity (this is sometimes also referred to generically as ACID properties).
The Sleepycat Java Collections API provides these transactional capabilities using a
transaction-per-thread model. Once a transaction is begun, it is implicitly associated
with the current thread until it is committed or aborted. This model is used for the
following reasons.

• The transaction-per-thread model is commonly used in other Java APIs such as J2EE.

• Since the Java collections API is used for data access, there is no way to pass a
transaction object to methods such as Map.put.

The Sleepycat Java Collections API provides two transaction APIs. The lower-level API is
the CurrentTransaction class. It provides a way to get the transaction for the current
thread, and to begin, commit and abort transactions. It also provides access to the Berkeley
DB core API Transaction object. With CurrentTransaction, just as in the com.sleepycat.db
API, the application is responsible for beginning, committing and aborting transactions,
and for handling deadlock exceptions and retrying operations. This API may be needed
for some applications, but it is not used in the example.

The example uses the higher-level TransactionRunner and TransactionWorker APIs, which
are build on top of CurrentTransaction. TransactionRunner.run() automatically begins
a transaction and then calls the TransactionWorker.doWork() method, which is
implemented by the application.

The TransactionRunner.run() method automatically detects deadlock exceptions and
performs retries by repeatedly calling the TransactionWorker.doWork() method until the
operation succeeds or the maximum retry count is reached. If the maximum retry count

Page 23DB Collections9/22/2004

Using Transactions

is reached or if another exception (other than DeadlockException) is thrown by
TransactionWorker.doWork(), then the transaction will be automatically aborted.
Otherwise, the transaction will be automatically committed.

Using this high-level API, if TransactionRunner.run() throws an exception, the application
can assume that the operation failed and the transaction was aborted; otherwise, when
an exception is not thrown, the application can assume the operation succeeded and the
transaction was committed.

The Sample.run() method creates a TransactionRunner object and calls its run() method.

import com.sleepycat.collections.TransactionRunner;
import com.sleepycat.collections.TransactionWorker;
...
public class Sample
{
 private SampleDatabase db;
 ...
 private void run()
 throws Exception
 {
 TransactionRunner runner = new TransactionRunner(db.getEnvironment());
 runner.run(new PopulateDatabase());
 runner.run(new PrintDatabase());
 }
 ...
 private class PopulateDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 }
 }

 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 }
 }
}

The run() method is called by main() and was outlined in the previous section. It first
creates a TransactionRunner, passing the database environment to its constructor.

It then calls TransactionRunner.run() to execute two transactions, passing instances of
the application-defined PopulateDatabase and PrintDatabase nested classes. These classes
implement the TransactionWorker.doWork() method and will be fully described in the
next two sections.

Page 24DB Collections9/22/2004

Using Transactions

For each call to TransactionRunner.run(), a separate transaction will be performed. The
use of two transactions in the example — one for populating the database and another
for printing its contents — is arbitrary. A real-life application should be designed to create
transactions for each group of operations that should have ACID properties, while also
taking into account the impact of transactions on performance.

The advantage of using TransactionRunner is that deadlock retries and transaction begin,
commit and abort are handled automatically. However, a TransactionWorker class must
be implemented for each type of transaction. If desired, anonymous inner classes can be
used to implement the TransactionWorker interface.

Adding Database Items

Adding (as well as updating, removing, and deleting) information in the database is
accomplished via the standard Java collections API. In the example, the Map.put method
is used to add objects. All standard Java methods for modifying a collection may be used
with the Sleepycat Java Collections API.

The PopulateDatabase.doWork() method calls private methods for adding objects to each
of the three database stores. It is called via the TransactionRunner class and was outlined
in the previous section.

import java.util.Map;
import com.sleepycat.collections.TransactionWorker;
...
public class Sample
{
 ...
 private SampleViews views;
 ...
 private class PopulateDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 addSuppliers();
 addParts();
 addShipments();
 }
 }
 ...

 private void addSuppliers()
 {
 }

 private void addParts()
 {
 }

Page 25DB Collections9/22/2004

Adding Database Items

 private void addShipments()
 {
 }
}

The addSuppliers(), addParts() and addShipments()methods add objects to the Suppliers,
Parts and Shipments stores. The Map for each store is obtained from the SampleViews
object.

 private void addSuppliers()
 {
 Map suppliers = views.getSupplierMap();
 if (suppliers.isEmpty())
 {
 System.out.println("Adding Suppliers");
 suppliers.put(new SupplierKey("S1"),
 new SupplierData("Smith", 20, "London"));
 suppliers.put(new SupplierKey("S2"),
 new SupplierData("Jones", 10, "Paris"));
 suppliers.put(new SupplierKey("S3"),
 new SupplierData("Blake", 30, "Paris"));
 suppliers.put(new SupplierKey("S4"),
 new SupplierData("Clark", 20, "London"));
 suppliers.put(new SupplierKey("S5"),
 new SupplierData("Adams", 30, "Athens"));
 }
 }

 private void addParts()
 {
 Map parts = views.getPartMap();
 if (parts.isEmpty())
 {
 System.out.println("Adding Parts");
 parts.put(new PartKey("P1"),
 new PartData("Nut", "Red",
 new Weight(12.0, Weight.GRAMS),
 "London"));
 parts.put(new PartKey("P2"),
 new PartData("Bolt", "Green",
 new Weight(17.0, Weight.GRAMS),
 "Paris"));
 parts.put(new PartKey("P3"),
 new PartData("Screw", "Blue",
 new Weight(17.0, Weight.GRAMS),
 "Rome"));
 parts.put(new PartKey("P4"),
 new PartData("Screw", "Red",

Page 26DB Collections9/22/2004

Adding Database Items

 new Weight(14.0, Weight.GRAMS),
 "London"));
 parts.put(new PartKey("P5"),
 new PartData("Cam", "Blue",
 new Weight(12.0, Weight.GRAMS),
 "Paris"));
 parts.put(new PartKey("P6"),
 new PartData("Cog", "Red",
 new Weight(19.0, Weight.GRAMS),
 "London"));
 }
 }

 private void addShipments()
 {
 Map shipments = views.getShipmentMap();
 if (shipments.isEmpty())
 {
 System.out.println("Adding Shipments");
 shipments.put(new ShipmentKey("P1", "S1"),
 new ShipmentData(300));
 shipments.put(new ShipmentKey("P2", "S1"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P3", "S1"),
 new ShipmentData(400));
 shipments.put(new ShipmentKey("P4", "S1"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P5", "S1"),
 new ShipmentData(100));
 shipments.put(new ShipmentKey("P6", "S1"),
 new ShipmentData(100));
 shipments.put(new ShipmentKey("P1", "S2"),
 new ShipmentData(300));
 shipments.put(new ShipmentKey("P2", "S2"),
 new ShipmentData(400));
 shipments.put(new ShipmentKey("P2", "S3"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P2", "S4"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P4", "S4"),
 new ShipmentData(300));
 shipments.put(new ShipmentKey("P5", "S4"),
 new ShipmentData(400));
 }
 }
}

The key and value classes used above were defined in the Defining Serialized Key and
Value Classes (page 6).

Page 27DB Collections9/22/2004

Adding Database Items

In each method above, objects are added only if the map is not empty. This is a simple
way of allowing the example program to be run repeatedly. In real-life applications
another technique — checking the Map.containsKey method, for example — might be
used.

Retrieving Database Items

Retrieving information from the database is accomplished via the standard Java collections
API. In the example, the Set.iterator method is used to iterate all Map.Entry objects
for each store. All standard Java methods for retrieving objects from a collection may be
used with the Sleepycat Java Collections API.

The PrintDatabase.doWork() method calls printEntries() to print the map entries for
each database store. It is called via the TransactionRunner class and was outlined in the
previous section.

import com.sleepycat.collections.StoredIterator;
import java.util.Iterator;
...
public class Sample
{
 ...
 private SampleViews views;
 ...
 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 printEntries("Parts",
 views.getPartEntrySet().iterator());
 printEntries("Suppliers",
 views.getSupplierEntrySet().iterator());
 printEntries("Shipments",
 views.getShipmentEntrySet().iterator());
 }
 }
 ...

 private void printEntries(String label, Iterator iterator)
 {
 }
 ...
}

The Set of Map.Entry objects for each store is obtained from the SampleViews object.
This set can also be obtained by calling the Map.entrySet method of a stored map.

Page 28DB Collections9/22/2004

Retrieving Database Items

The printEntries() prints the map entries for any stored map. The Object.toString
method of each key and value is called to obtain a printable representation of each object.

 private void printEntries(String label, Iterator iterator)
 {
 System.out.println("\n--- " + label + " ---");
 try
 {
 while (iterator.hasNext())
 {
 Map.Entry entry = (Map.Entry) iterator.next();
 System.out.println(entry.getKey().toString());
 System.out.println(entry.getValue().toString());
 }
 }
 finally
 {
 StoredIterator.close(iterator);
 }
 }

It is very important that all iterators for stored collections are explicitly closed. To ensure
they are closed, a finally clause should be used as shown above. If the iterator is not
closed, the underlying Berkeley DB cursor is not closed either and the store may become
unusable.

If the iterator is cast to StoredIterator then its StoredIterator.close() method can be
called. Or, as shown above, the static StoredIterator.close() method can be called to
avoid casting. The static form of this method can be called safely for any Iterator. If an
iterator for a non-stored collection is passed, it is simply ignored.

This is one of a small number of behavioral differences between standard Java collections
and stored collections. For a complete list see Using Stored Collections (page 84).

The output of the example program is shown below.

Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
PartKey: number=P1
PartData: name=Nut color=Red weight=[12.0 grams] city=London
PartKey: number=P2
PartData: name=Bolt color=Green weight=[17.0 grams] city=Paris
PartKey: number=P3
PartData: name=Screw color=Blue weight=[17.0 grams] city=Rome
PartKey: number=P4
PartData: name=Screw color=Red weight=[14.0 grams] city=London
PartKey: number=P5

Page 29DB Collections9/22/2004

Retrieving Database Items

PartData: name=Cam color=Blue weight=[12.0 grams] city=Paris
PartKey: number=P6
PartData: name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
SupplierKey: number=S1
SupplierData: name=Smith status=20 city=London
SupplierKey: number=S2
SupplierData: name=Jones status=10 city=Paris
SupplierKey: number=S3
SupplierData: name=Blake status=30 city=Paris
SupplierKey: number=S4
SupplierData: name=Clark status=20 city=London
SupplierKey: number=S5
SupplierData: name=Adams status=30 city=Athens

--- Shipments ---
ShipmentKey: supplier=S1 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S2 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S2 part=P2
ShipmentData: quantity=400
ShipmentKey: supplier=S3 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S1 part=P3
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P4
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P4
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P5
ShipmentData: quantity=100
ShipmentKey: supplier=S4 part=P5
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P6
ShipmentData: quantity=100

Handling Exceptions

Exception handling was illustrated previously in Implementing the Main Program (page 20)
and Using Transactions (page 23) exception handling in a Sleepycat Java Collections API
application in more detail.

Page 30DB Collections9/22/2004

Handling Exceptions

There are two exceptions that must be treated specially: RunRecoveryException and
DeadlockException.

RunRecoveryException is thrown when the only solution is to shut down the application
and run recovery. All applications must catch this exception and follow the recovery
procedure.

When DeadlockException is thrown, the application should normally retry the operation.
If a deadlock continues to occur for some maximum number of retries, the application
should give up and try again later or take other corrective actions. The Sleepycat Java
Collections API provides two APIs for transaction execution.

• When using the CurrentTransaction class directly, the application must catch
DeadlockException and follow the procedure described previously.

• When using the TransactionRunner class, retries are performed automatically and the
application need only handle the case where the maximum number of retries has been
reached. In that case, TransactionRunner.run will throw DeadlockException.

When using the TransactionRunner class there are two other considerations.

• First, if the application-defined TransactionWorker.doWorkmethod throws an exception
the transaction will automatically be aborted, and otherwise the transaction will
automatically be committed. Applications should design their transaction processing
with this in mind.

• Second, please be aware that TransactionRunner.run unwraps exceptions in order to
discover whether a nested exception is a DeadlockException. This is particularly
important since all Berkeley DB exceptions that occur while calling a stored collection
method are wrapped with a RuntimeExceptionWrapper. This wrapping is necessary
because Berkeley DB exceptions are checked exceptions, and the Java collections API
does not allow such exceptions to be thrown.

When calling TransactionRunner.run, the unwrapped (nested) exception will be unwrapped
and thrown automatically. If you are not using TransactionRunner or if you are handling
exceptions directly for some other reason, use the ExceptionUnwrapper.unwrap method
to get the nested exception. For example, this can be used to discover that an exception
is a RunRecoveryException as shown below.

import com.sleepycat.db.RunRecoveryException;
import com.sleepycat.util.ExceptionUnwrapper;
...
 catch (Exception e)
 {
 e = ExceptionUnwrapper.unwrap(e);
 if (e instanceof RunRecoveryException)
 {
 // follow recovery procedure
 }
 }

Page 31DB Collections9/22/2004

Handling Exceptions

Chapter 3. Using Secondary Indices
In the Basic example, each store has a single primary key. The Index example extends
the Basic example to add the use of secondary keys.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Opening Secondary Key Indices

Secondary indices or secondary databases are used to access a primary database by a key
other than the primary key. Recall that the Supplier Number field is the primary key of
the Supplier database. In this section, the Supplier City field will be used as a secondary
lookup key. Given a city value, we would like to be able to find the Suppliers in that city.
Note that more than one Supplier may be in the same city.

Both primary and secondary databases contain key-value records. The key of an index
record is the secondary key, and its value is the key of the associated record in the primary
database. When lookups by secondary key are performed, the associated record in the
primary database is transparently retrieved by its primary key and returned to the caller.

Secondary indices are maintained automatically when index key fields (the City field in
this case) are added, modified or removed in the records of the primary database.
However, the application must implement a SecondaryKeyCreator that extracts the index
key from the database record.

It is useful to contrast opening an secondary index with opening a primary database (as
described earlier in Opening and Closing Databases (page 15).

• A primary database may be associated with one or more secondary indices. A secondary
index is always associated with exactly one primary database.

• For a secondary index, a SecondaryKeyCreator must be implemented by the application
to extract the index key from the record of its associated primary database.

• A primary database is represented by a Database object and a secondary index is
represented by a SecondaryDatabase object. The SecondaryDatabase class extends the
Database class.

• When a SecondaryDatabase is created it is associated with a primary Database object
and a SecondaryKeyCreator.

The SampleDatabase class is extended to open the Supplier-by-City secondary key index.

import com.sleepycat.bind.serial.SerialSerialKeyCreator;
import com.sleepycat.db.SecondaryConfig;
import com.sleepycat.db.SecondaryDatabase;
...
public class SampleDatabase
{

Page 32DB Collections9/22/2004

 ...
 private static final String SUPPLIER_CITY_INDEX = "supplier_city_index";
 ...
 private SecondaryDatabase supplierByCityDb;
 ...
 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 SecondaryConfig secConfig = new SecondaryConfig();
 secConfig.setTransactional(true);
 secConfig.setAllowCreate(true);
 secConfig.setType(DatabaseType.BTREE);
 secConfig.setSortedDuplicates(true);

 secConfig.setKeyCreator(
 new SupplierByCityKeyCreator(javaCatalog,
 SupplierKey.class,
 SupplierData.class,
 String.class));

 supplierByCityDb = env.openSecondaryDatabase(null,
 SUPPLIER_CITY_INDEX,
 null,
 supplierDb,
 secConfig);
 ...
 }
}

A SecondaryConfig object is used to configure the secondary database. The
SecondaryConfig class extends the DatabaseConfig class, and most steps for configuring
a secondary database are the same as for configuring a primary database. The main
difference in the example above is that the SecondaryConfig.setSortedDuplicates()
method is called to allow duplicate index keys. This is how more than one Supplier may
be in the same City. If this property is not specified, the default is that the index keys of
all records must be unique.

For a primary database, duplicate keys are not normally used since a primary database
with duplicate keys may not have any associated secondary indices. If primary database
keys are not unique, there is no way for a secondary key to reference a specific record
in the primary database.

Note that setSortedDuplicates() and not setUnsortedDuplicates() was called. Sorted
duplicates are always used for indices rather than unsorted duplicates, since sorting
enables optimized equality joins.

Page 33DB Collections9/22/2004

Opening Secondary Key Indices

Opening a secondary key index requires creating a SecondaryKeyCreator. The
SupplierByCityKeyCreator class implements the SecondaryKeyCreator interface and will
be defined below.

The SecondaryDatabase object is opened last. If you compare the openSecondaryDatabase()
and openDatabase() methods you'll notice only two differences:

• openSecondaryDatabase() has an extra parameter for specifying the associated primary
database. The primary database is supplierDb in this case.

• The last parameter of openSecondaryDatabase() is a SecondaryConfig instead of a
DatabaseConfig.

How to use the secondary index to access records will be shown in a later section.

The application-defined SupplierByCityKeyCreator class is shown below. It was used
above to configure the secondary database.

public class SampleDatabase
{
...
 private static class SupplierByCityKeyCreator
 extends SerialSerialKeyCreator
 {
 private SupplierByCityKeyCreator(StoredClassCatalog catalog,
 Class primaryKeyClass,
 Class valueClass,
 Class indexKeyClass)
 {
 super(catalog, primaryKeyClass, valueClass, indexKeyClass);
 }

 public Object createSecondaryKey(Object primaryKeyInput,
 Object valueInput)
 {
 SupplierData supplierData = (SupplierData) valueInput;
 return supplierData.getCity();
 }
 }
...
}

In general, a key creator class must implement the SecondaryKeyCreator interface. This
interface has methods that operate on the record data as raw bytes. In practice, it is
easiest to use an abstract base class that performs the conversion of record data to and
from the format defined for the database's key and value. The base class implements the
SecondaryKeyCreator interface and has abstract methods that must be implemented in
turn by the application.

Page 34DB Collections9/22/2004

Opening Secondary Key Indices

In this example the SerialSerialKeyCreator base class is used because the database
record uses the serial format for both its key and its value. The abstract methods of this
class have key and value parameters of type Object which are automatically converted
to and from the raw record data by the base class.

To perform the conversions properly, the key creator must be aware of all three formats
involved: the key format of the primary database record, the value format of the primary
database record, and the key format of the index record. The SerialSerialKeyCreator
constructor is given the base classes for these three formats as parameters.

The SerialSerialKeyCreator.createSecondaryKey method is given the key and value of
the primary database record as parameters, and it returns the key of the index record.
In this example, the index key is a field in the primary database record value. Since the
record value is known to be a SupplierData object, it is cast to that class and the city
field is returned.

Note that the primaryKeyInput parameter is not used in the example. This parameter is
needed only when an index key is derived from the key of the primary database record.
Normally an index key is derived only from the primary database record value, but it may
be derived from the key, value or both.

The following getter methods return the secondary database object for use by other
classes in the example program. The secondary database object is used to create Java
collections for accessing records via their secondary keys.

public class SampleDatabase
{
 ...
 public final SecondaryDatabase getSupplierByCityDatabase()
 {
 return supplierByCityDb;
 }
 ...
}

The following statement closes the secondary database.

public class SampleDatabase
{
 ...
 public void close()
 throws DatabaseException {

 supplierByCityDb.close();
 partDb.close();
 supplierDb.close();
 shipmentDb.close();
 javaCatalog.close();
 env.close();
 }

Page 35DB Collections9/22/2004

Opening Secondary Key Indices

 ...
}

Secondary databases must be closed before closing their associated primary database.

More Secondary Key Indices

This section builds on the prior section describing secondary key indices. Two more
secondary key indices are defined for indexing the Shipment record by PartNumber and
by SupplierNumber.

The SampleDatabase class is extended to open the Shipment-by-Part and
Shipment-by-Supplier secondary key indices.

import com.sleepycat.bind.serial.SerialSerialKeyCreator;
import com.sleepycat.db.SecondaryConfig;
import com.sleepycat.db.SecondaryDatabase;
...
public class SampleDatabase
{
 ...
 private static final String SHIPMENT_PART_INDEX = "shipment_part_index";
 private static final String SHIPMENT_SUPPLIER_INDEX =
 "shipment_supplier_index";
 ...
 private SecondaryDatabase shipmentByPartDb;
 private SecondaryDatabase shipmentBySupplierDb;
 ...
 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 SecondaryConfig secConfig = new SecondaryConfig();
 secConfig.setTransactional(true);
 secConfig.setAllowCreate(true);
 secConfig.setType(DatabaseType.BTREE);
 secConfig.setSortedDuplicates(true);
 ...
 secConfig.setKeyCreator(
 new ShipmentByPartKeyCreator(javaCatalog,
 ShipmentKey.class,
 ShipmentData.class,
 PartKey.class));
 shipmentByPartDb = env.openSecondaryDatabase(null,
 SHIPMENT_PART_INDEX,
 null,
 shipmentDb,
 secConfig);

Page 36DB Collections9/22/2004

More Secondary Key Indices

 secConfig.setKeyCreator(
 new ShipmentBySupplierKeyCreator(javaCatalog,
 ShipmentKey.class,
 ShipmentData.class,
 SupplierKey.class));
 shipmentBySupplierDb = env.openSecondaryDatabase(null,
 SHIPMENT_SUPPLIER_INDEX,
 null,
 shipmentDb,
 secConfig);
 ...
 }
}

The statements in this example are very similar to the statements used in the previous
section for opening a secondary index.

The application-defined ShipmentByPartKeyCreator and ShipmentBySupplierKeyCreator
classes are shown below. They were used above to configure the secondary database
objects.

public class SampleDatabase
{
...
 private static class ShipmentByPartKeyCreator
 extends SerialSerialKeyCreator
 {
 private ShipmentByPartKeyCreator(StoredClassCatalog catalog,
 Class primaryKeyClass,
 Class valueClass,
 Class indexKeyClass)
 {
 super(catalog, primaryKeyClass, valueClass, indexKeyClass);
 }

 public Object createSecondaryKey(Object primaryKeyInput,
 Object valueInput)
 {
 ShipmentKey shipmentKey = (ShipmentKey) primaryKeyInput;
 return new PartKey(shipmentKey.getPartNumber());
 }
 }

 private static class ShipmentBySupplierKeyCreator
 extends SerialSerialKeyCreator
 {
 private ShipmentBySupplierKeyCreator(StoredClassCatalog catalog,
 Class primaryKeyClass,
 Class valueClass,
 Class indexKeyClass)

Page 37DB Collections9/22/2004

More Secondary Key Indices

 {
 super(catalog, primaryKeyClass, valueClass, indexKeyClass);
 }

 public Object createSecondaryKey(Object primaryKeyInput,
 Object valueInput)
 {
 ShipmentKey shipmentKey = (ShipmentKey) primaryKeyInput;
 return new SupplierKey(shipmentKey.getSupplierNumber());
 }
 }
 ...
}

The key creator classes above are almost identical to the one defined in the previous
section for use with a secondary index. The index key fields are different, of course, but
the interesting difference is that the index keys are extracted from the key, not the value,
of the Shipment record. This illustrates that an index key may be derived from the primary
database record key, value, or both.

The following getter methods return the secondary database objects for use by other
classes in the example program.

public class SampleDatabase
{
 ...
 public final SecondaryDatabase getShipmentByPartDatabase()
 {
 return shipmentByPartDb;
 }

 public final SecondaryDatabase getShipmentBySupplierDatabase()
 {
 return shipmentBySupplierDb;
 }
 ...
}

The following statements close the secondary databases.

public class SampleDatabase
{
 ...
 public void close()
 throws DatabaseException {

 supplierByCityDb.close();
 shipmentByPartDb.close();
 shipmentBySupplierDb.close();
 partDb.close();

Page 38DB Collections9/22/2004

More Secondary Key Indices

 supplierDb.close();
 shipmentDb.close();
 javaCatalog.close();
 env.close();
 }
 ...
}

Secondary databases must be closed before closing their associated primary database.

Creating Indexed Collections

In the prior Basic example, bindings and Java collections were created for accessing
databases via their primary keys. In this example, bindings and collections are added for
accessing the same databases via their index keys. As in the prior example, serial bindings
and the Java Map class are used.

When a map is created from a SecondaryDatabase, the keys of the map will be the index
keys. However, the values of the map will be the values of the primary database associated
with the index. This is how index keys can be used to access the values in a primary
database.

For example, the Supplier's City field is an index key that can be used to access the
Supplier database. When a map is created using the supplierByCityDb() method, the key
to the map will be the City field, a String object. When Map.get is called passing the
City as the key parameter, a SupplierData object will be returned.

The SampleViews class is extended to create an index key binding for the Supplier's City
field and three Java maps based on the three indices created in the prior section.

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.collections.StoredEntrySet;
import com.sleepycat.collections.StoredMap;
...

public class SampleViews
{
 ...
 private StoredMap supplierByCityMap;
 private StoredMap shipmentByPartMap;
 private StoredMap shipmentBySupplierMap;
 ...

 public SampleViews(SampleDatabase db)
 {
 ClassCatalog catalog = db.getClassCatalog();
 ...
 EntryBinding cityKeyBinding =
 new SerialBinding(catalog, String.class);

Page 39DB Collections9/22/2004

Creating Indexed Collections

 ...
 supplierByCityMap =
 new StoredMap(db.getSupplierByCityDatabase(),
 cityKeyBinding, supplierValueBinding, true);
 shipmentByPartMap =
 new StoredMap(db.getShipmentByPartDatabase(),
 partKeyBinding, shipmentValueBinding, true);
 shipmentBySupplierMap =
 new StoredMap(db.getShipmentBySupplierDatabase(),
 supplierKeyBinding, shipmentValueBinding, true);
 ...
 }
}

In general, the indexed maps are created here in the same way as the unindexed maps
were created in the Basic example. The differences are:

• The first parameter of the StoredMap constructor is a SecondaryDatabase rather than
a Database.

• The second parameter is the index key binding rather than the primary key binding.

For the supplierByCityMap, the cityKeyBinding must first be created. This binding was
not created in the Basic example because the City field is not a primary key.

Like the bindings created earlier for keys and values, the cityKeyBinding is a
SerialBinding. Unlike the bindings created earlier, it is an example of creating a binding
for a built-in Java class, String, instead of an application-defined class. Any serializable
class may be used.

For the shipmentByPartMap and shipmentBySupplierMap, the partKeyBinding and
supplierKeyBinding are used. These were created in the Basic example and used as the
primary key bindings for the partMap and supplierMap.

The value bindings — supplierValueBinding and shipmentValueBinding— were also created
in the Basic example.

This illustrates that bindings and formats may and should be reused where appropriate
for creating maps and other collections.

The following getter methods return the stored maps for use by other classes in the
example program. Convenience methods for returning entry sets are also included.

public class SampleViews
{
 ...
 public final StoredMap getShipmentByPartMap()
 {
 return shipmentByPartMap;
 }

Page 40DB Collections9/22/2004

Creating Indexed Collections

 public final StoredMap getShipmentBySupplierMap()
 {
 return shipmentBySupplierMap;
 }

 public final StoredMap getSupplierByCityMap()
 {
 return supplierByCityMap;
 }

 public final StoredEntrySet getShipmentByPartEntrySet()
 {
 return (StoredEntrySet) shipmentByPartMap.entrySet();
 }

 public final StoredEntrySet getShipmentBySupplierEntrySet()
 {
 return (StoredEntrySet) shipmentBySupplierMap.entrySet();
 }

 public final StoredEntrySet getSupplierByCityEntrySet()
 {
 return (StoredEntrySet) supplierByCityMap.entrySet();
 }
 ...
}

Retrieving Items by Index Key

Retrieving information via database index keys can be accomplished using the standard
Java collections API, using a collection created from a SecondaryDatabase rather than a
Database. However, the standard Java API does not support duplicate keys: more than
one element in a collection having the same key. All three indices created in the prior
section have duplicate keys because of the nature of the city, part number and supplier
number index keys. More than one supplier may be in the same city, and more than one
shipment may have the same part number or supplier number. This section describes how
to use extended methods for stored collections to return all values for a given key.

Using the standard Java collections API, the Map.get method for a stored collection with
duplicate keys will return only the first value for a given key. To obtain all values for a
given key, the StoredMap.duplicates method may be called. This returns a Collection
of values for the given key. If duplicate keys are not allowed, the returned collection will
have at most one value. If the key is not present in the map, an empty collection is
returned.

The Sample class is extended to retrieve duplicates for specific index keys that are present
in the database.

Page 41DB Collections9/22/2004

Retrieving Items by Index Key

import com.sleepycat.collections.StoredIterator;
import java.util.Iterator;
...
public class Sample
{
 ...
 private SampleViews views;
 ...
 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 printEntries("Parts",
 views.getPartEntrySet().iterator());
 printEntries("Suppliers",
 views.getSupplierEntrySet().iterator());
 printValues("Suppliers for City Paris",
 views.getSupplierByCityMap().duplicates(
 "Paris").iterator());
 printEntries("Shipments",
 views.getShipmentEntrySet().iterator());
 printValues("Shipments for Part P1",
 views.getShipmentByPartMap().duplicates(
 new PartKey("P1")).iterator());
 printValues("Shipments for Supplier S1",
 views.getShipmentBySupplierMap().duplicates(
 new
 SupplierKey("S1")).iterator());
 }
 }

 private void printValues(String label, Iterator iterator)
 {
 System.out.println("\n--- " + label + " ---");
 try
 {
 while (iterator.hasNext())
 {
 System.out.println(iterator.next().toString());
 }
 }
 finally
 {
 StoredIterator.close(iterator);
 }
 }
 ...
}

Page 42DB Collections9/22/2004

Retrieving Items by Index Key

The StoredMap.duplicates method is called passing the desired key. The returned value
is a standard Java Collection containing the values for the specified key. A standard Java
Iterator is then obtained for this collection and all values returned by that iterator are
printed.

Another technique for retrieving duplicates is to use the collection returned by
Map.entrySet. When duplicate keys are present, a Map.Entry object will be present in
this collection for each duplicate. This collection can then be iterated or a subset can be
created from it, all using the standard Java collection API.

Note that we did not discuss how duplicates keys can be explicitly added or removed in
a collection. For index keys, the addition and deletion of duplicate keys happens
automatically when records containing the index key are added, updated, or removed.

While not shown in the example program, it is also possible to create a store with duplicate
keys in the same way as an index with duplicate keys — by calling
DatabaseConfig.setSortedDuplicates() method. In that case, calling Map.put will add
duplicate keys. To remove all duplicate keys, call Map.remove. To remove a specific
duplicate key, call StoredMap.duplicates and then call Collection.remove using the
returned collection. Duplicate values may also be added to this collection using
Collection.add.

The output of the example program is shown below.

Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
PartKey: number=P1
PartData: name=Nut color=Red weight=[12.0 grams] city=London
PartKey: number=P2
PartData: name=Bolt color=Green weight=[17.0 grams] city=Paris
PartKey: number=P3
PartData: name=Screw color=Blue weight=[17.0 grams] city=Rome
PartKey: number=P4
PartData: name=Screw color=Red weight=[14.0 grams] city=London
PartKey: number=P5
PartData: name=Cam color=Blue weight=[12.0 grams] city=Paris
PartKey: number=P6
PartData: name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
SupplierKey: number=S1
SupplierData: name=Smith status=20 city=London
SupplierKey: number=S2
SupplierData: name=Jones status=10 city=Paris
SupplierKey: number=S3
SupplierData: name=Blake status=30 city=Paris
SupplierKey: number=S4

Page 43DB Collections9/22/2004

Retrieving Items by Index Key

SupplierData: name=Clark status=20 city=London
SupplierKey: number=S5
SupplierData: name=Adams status=30 city=Athens

--- Suppliers for City Paris ---
SupplierData: name=Jones status=10 city=Paris
SupplierData: name=Blake status=30 city=Paris

--- Shipments ---
ShipmentKey: supplier=S1 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S2 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S2 part=P2
ShipmentData: quantity=400
ShipmentKey: supplier=S3 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S1 part=P3
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P4
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P4
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P5
ShipmentData: quantity=100
ShipmentKey: supplier=S4 part=P5
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P6
ShipmentData: quantity=100

--- Shipments for Part P1 ---
ShipmentData: quantity=300
ShipmentData: quantity=300

--- Shipments for Supplier S1 ---
ShipmentData: quantity=300
ShipmentData: quantity=200
ShipmentData: quantity=400
ShipmentData: quantity=200
ShipmentData: quantity=100
ShipmentData: quantity=100

Page 44DB Collections9/22/2004

Retrieving Items by Index Key

Chapter 4. Using Entity Classes
In the prior examples, the keys and values of each store were represented using separate
classes. For example, a PartKey and a PartData class were used. Many times it is desirable
to have a single class representing both the key and the value, for example, a Part class.

Such a combined key and value class is called an entity class and is used along with an
entity binding. Entity bindings combine a key and a value into an entity when reading a
record from a collection, and split an entity into a key and a value when writing a record
to a collection. Entity bindings are used in place of value bindings, and entity objects are
used with collections in place of value objects.

Some reasons for using entities are:

• When the key is a property of an entity object representing the record as a whole,
the object's identity and concept are often clearer than with key and value objects
that are disjoint.

• A single entity object per record is often more convenient to use than two objects.

Of course, instead of using an entity binding, you could simply create the entity yourself
after reading the key and value from a collection, and split the entity into a key and value
yourself before writing it to a collection. But this would detract from the convenience of
the using the Java collections API. It is convenient to obtain a Part object directly from
Map.get and to add a Part object using Set.add. Collections having entity bindings can
be used naturally without combining and splitting objects each time a collection method
is called; however, an entity binding class must be defined by the application.

In addition to showing how to use entity bindings, this example illustrates a key feature
of all bindings: Bindings are independent of database storage parameters and formats.
Compare this example to the prior Index example and you'll see that the Sample and
SampleViews classes have been changed to use entity bindings, but the SampleDatabase
class was not changed at all. In fact, the Entity program and the Index program can be
used interchangeably to access the same physical database files. This demonstrates that
bindings are only a "view" onto the physical stored data.

Warning: When using multiple bindings for the same database, it is the application's
responsibility to ensure that the same format is used for all bindings. For example, a
serial binding and a tuple binding cannot be used to access the same records.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Entity Classes

As described in the prior section, entity classes are combined key/value classes that are
managed by entity bindings. In this example the Part, Supplier and Shipment classes are
entity classes. These classes contain fields that are a union of the fields of the key and
value classes that were defined earlier for each store.

Page 45DB Collections9/22/2004

In general, entity classes may be defined in any way desired by the application. The entity
binding, which is also defined by the application, is responsible for mapping between
key/value objects and entity objects.

The Part, Supplier and Shipment entity classes are defined below.

An important difference between the entity classes defined here and the key and value
classes defined earlier is that the entity classes are not serializable (do not implement
the Serializable interface). This is because the entity classes are not directly stored.
The entity binding decomposes an entity object into key and value objects, and only the
key and value objects are serialized for storage.

One advantage of using entities can already be seen in the toString() method of the
classes below. These return debugging output for the combined key and value, and will
be used later to create a listing of the database that is more readable than in the prior
examples.

public class Part
{
 private String number;
 private String name;
 private String color;
 private Weight weight;
 private String city;

 public Part(String number, String name, String color, Weight weight,
 String city)
 {
 this.number = number;
 this.name = name;
 this.color = color;
 this.weight = weight;
 this.city = city;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final String getColor()
 {
 return color;
 }

Page 46DB Collections9/22/2004

Defining Entity Classes

 public final Weight getWeight()
 {
 return weight;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "Part: number=" + number +
 " name=" + name +
 " color=" + color +
 " weight=" + weight +
 " city=" + city + '.';
 }
}

public class Supplier
{
 private String number;
 private String name;
 private int status;
 private String city;

 public Supplier(String number, String name, int status, String city)
 {
 this.number = number;
 this.name = name;
 this.status = status;
 this.city = city;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final int getStatus()
 {
 return status;
 }

Page 47DB Collections9/22/2004

Defining Entity Classes

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "Supplier: number=" + number +
 " name=" + name +
 " status=" + status +
 " city=" + city + '.';
 }
}

public class Shipment
{
 private String partNumber;
 private String supplierNumber;
 private int quantity;

 public Shipment(String partNumber, String supplierNumber, int quantity)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 this.quantity = quantity;
 }

 public final String getPartNumber()
 {
 return partNumber;
 }

 public final String getSupplierNumber()
 {
 return supplierNumber;
 }

 public final int getQuantity()
 {
 return quantity;
 }

 public String toString()
 {
 return "Shipment: part=" + partNumber +
 " supplier=" + supplierNumber +
 " quantity=" + quantity + '.';

Page 48DB Collections9/22/2004

Defining Entity Classes

 }
}

Creating Entity Bindings

Entity bindings are similar to ordinary bindings in that they convert between Java objects
and the stored data format of keys and values. In addition, entity bindings map between
key/value pairs and entity objects. An ordinary binding is a one-to-one mapping, while
an entity binding is a two-to-one mapping.

The partValueBinding, supplierValueBinding and shipmentValueBinding bindings are
created below as entity bindings rather than (in the prior examples) serial bindings.

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.EntityBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.serial.SerialSerialBinding;
...

public class SampleViews
{
 ...
 public SampleViews(SampleDatabase db)
 {
 ClassCatalog catalog = db.getClassCatalog();
 SerialBinding partKeyBinding =
 new SerialBinding(catalog, PartKey.class);
 EntityBinding partValueBinding =
 new PartBinding(catalog, PartKey.class, PartData.class);
 SerialBinding supplierKeyBinding =
 new SerialBinding(catalog, SupplierKey.class);
 EntityBinding supplierValueBinding =
 new SupplierBinding(catalog, SupplierKey.class,
 SupplierData.class);
 SerialBinding shipmentKeyBinding =
 new SerialBinding(catalog, ShipmentKey.class);
 EntityBinding shipmentValueBinding =
 new ShipmentBinding(catalog, ShipmentKey.class,
 ShipmentData.class);
 SerialBinding cityKeyBinding =
 new SerialBinding(catalog, String.class);
 ...
 }
}

The entity bindings will be used in the next section to construct stored map objects.

The PartBinding class is defined below.

Page 49DB Collections9/22/2004

Creating Entity Bindings

public class SampleViews
{
 ...
 private static class PartBinding extends SerialSerialBinding {
 private PartBinding(ClassCatalog classCatalog,
 Class keyClass,
 Class dataClass)
 {
 super(classCatalog, keyClass, dataClass);
 }

 public Object entryToObject(Object keyInput, Object dataInput)
 {
 PartKey key = (PartKey) keyInput;
 PartData data = (PartData) dataInput;
 return new Part(key.getNumber(), data.getName(), data.getColor(),
 data.getWeight(), data.getCity());
 }

 public Object objectToKey(Object object)
 {
 Part part = (Part) object;
 return new PartKey(part.getNumber());
 }

 public Object objectToData(Object object)
 {
 Part part = (Part) object;
 return new PartData(part.getName(), part.getColor(),
 part.getWeight(), part.getCity());
 }
 }
 ...
}

In general, an entity binding is any class that implements the EntityBinding interface,
just as an ordinary binding is any class that implements the EntryBinding interface. In
the prior examples the built-in SerialBinding class (which implements EntryBinding)
was used and no application-defined binding classes were needed.

In this example, application-defined binding classes are used that extend the
SerialSerialBinding abstract base class. This base class implements EntityBinding and
provides the conversions between key/value bytes and key/value objects, just as the
SerialBinding class does. The application-defined entity class implements the abstract
methods defined in the base class that map between key/value objects and entity objects.

Three abstract methods are implemented for each entity binding. The entryToObject()
method takes as input the key and data objects, which have been deserialized
automatically by the base class. As output, it returns the combined Part entity.

Page 50DB Collections9/22/2004

Creating Entity Bindings

The objectToKey() and objectToData() methods take an entity object as input. As output
they return the part key or data object that is extracted from the entity object. The key
or data will then be serialized automatically by the base class.

The SupplierBinding and ShipmentBinding classes are very similar to the PartBinding
class.

public class SampleViews
{
 ...
 private static class SupplierBinding extends SerialSerialBinding {
 private SupplierBinding(ClassCatalog classCatalog,
 Class keyClass,
 Class dataClass)
 {
 super(classCatalog, keyClass, dataClass);
 }

 public Object entryToObject(Object keyInput, Object dataInput)
 {
 SupplierKey key = (SupplierKey) keyInput;
 SupplierData data = (SupplierData) dataInput;
 return new Supplier(key.getNumber(), data.getName(),
 data.getStatus(), data.getCity());
 }

 public Object objectToKey(Object object)
 {
 Supplier supplier = (Supplier) object;
 return new SupplierKey(supplier.getNumber());
 }

 public Object objectToData(Object object)
 {
 Supplier supplier = (Supplier) object;
 return new SupplierData(supplier.getName(), supplier.getStatus(),
 supplier.getCity());
 }
 }

 private static class ShipmentBinding extends SerialSerialBinding {
 private ShipmentBinding(ClassCatalog classCatalog,
 Class keyClass,
 Class dataClass)
 {
 super(classCatalog, keyClass, dataClass);
 }

 public Object entryToObject(Object keyInput, Object dataInput)

Page 51DB Collections9/22/2004

Creating Entity Bindings

 {
 ShipmentKey key = (ShipmentKey) keyInput;
 ShipmentData data = (ShipmentData) dataInput;
 return new Shipment(key.getPartNumber(), key.getSupplierNumber(),
 data.getQuantity());
 }

 public Object objectToKey(Object object)
 {
 Shipment shipment = (Shipment) object;
 return new ShipmentKey(shipment.getPartNumber(),
 shipment.getSupplierNumber());
 }

 public Object objectToData(Object object)
 {
 Shipment shipment = (Shipment) object;
 return new ShipmentData(shipment.getQuantity());
 }
 }
 ...
}

Creating Collections with Entity Bindings

Stored map objects are created in this example in the same way as in prior examples,
but using entity bindings in place of value bindings. All value objects passed and returned
to the Java collections API are then actually entity objects (Part, Supplier and Shipment).
The application no longer deals directly with plain value objects (PartData, SupplierData
and ShipmentData).

Since the partValueBinding, supplierValueBinding and shipmentValueBinding were
defined as entity bindings in the prior section, there are no source code changes necessary
for creating the stored map objects.

public class SampleViews
{
 ...
 public SampleViews(SampleDatabase db)
 {
 ...
 partMap =
 new StoredMap(db.getPartDatabase(),
 partKeyBinding, partValueBinding, true);
 supplierMap =
 new StoredMap(db.getSupplierDatabase(),
 supplierKeyBinding, supplierValueBinding, true);
 shipmentMap =
 new StoredMap(db.getShipmentDatabase(),

Page 52DB Collections9/22/2004

Creating Collections with Entity
Bindings

 shipmentKeyBinding, shipmentValueBinding, true);
 ...
 }

Specifying an EntityBinding will select a different StoredMap constructor, but the syntax
is the same. In general, an entity binding may be used anywhere that a value binding is
used.

The following getter methods are defined for use by other classes in the example program.
Instead of returning the map's entry set (Map.entrySet), the map's value set (Map.values)
is returned. The entry set was convenient in prior examples because it allowed enumerating
all key/value pairs in the collection. Since an entity contains the key and the value,
enumerating the value set can now be used more conveniently for the same purpose.

import com.sleepycat.collections.StoredValueSet;
...
public class SampleViews
{
 ...
 public StoredValueSet getPartSet()
 {
 return (StoredValueSet) partMap.values();
 }

 public StoredValueSet getSupplierSet()
 {
 return (StoredValueSet) supplierMap.values();
 }

 public StoredValueSet getShipmentSet()
 {
 return (StoredValueSet) shipmentMap.values();
 }
 ...
}

Notice that the collection returned by the StoredMap.values method is actually a
StoredValueSet and not just a Collection as defined by the Map.values interface. As long
as duplicate keys are not allowed, this collection will behave as a true set and will disallow
the addition of duplicates, etc.

Using Entities with Collections

In this example entity objects, rather than key and value objects, are used for adding
and enumerating the records in a collection. Because fewer classes and objects are
involved, adding and enumerating is done more conveniently and more simply than in the
prior examples.

Page 53DB Collections9/22/2004

Using Entities with Collections

For adding and iterating entities, the collection of entities returned by Map.values is
used. In general, when using an entity binding, all Java collection methods that are passed
or returned a value object will be passed or returned an entity object instead.

The Sample class has been changed in this example to add objects using the Set.add
method rather than the Map.put method that was used in the prior examples. Entity
objects are constructed and passed to Set.add.

import java.util.Set;
...
public class Sample
{
 ...
 private void addSuppliers()
 {
 Set suppliers = views.getSupplierSet();
 if (suppliers.isEmpty())
 {
 System.out.println("Adding Suppliers");
 suppliers.add(new Supplier("S1", "Smith", 20, "London"));
 suppliers.add(new Supplier("S2", "Jones", 10, "Paris"));
 suppliers.add(new Supplier("S3", "Blake", 30, "Paris"));
 suppliers.add(new Supplier("S4", "Clark", 20, "London"));
 suppliers.add(new Supplier("S5", "Adams", 30, "Athens"));
 }
 }

 private void addParts()
 {
 Set parts = views.getPartSet();
 if (parts.isEmpty())
 {
 System.out.println("Adding Parts");
 parts.add(new Part("P1", "Nut", "Red",
 new Weight(12.0, Weight.GRAMS), "London"));
 parts.add(new Part("P2", "Bolt", "Green",
 new Weight(17.0, Weight.GRAMS), "Paris"));
 parts.add(new Part("P3", "Screw", "Blue",
 new Weight(17.0, Weight.GRAMS), "Rome"));
 parts.add(new Part("P4", "Screw", "Red",
 new Weight(14.0, Weight.GRAMS), "London"));
 parts.add(new Part("P5", "Cam", "Blue",
 new Weight(12.0, Weight.GRAMS), "Paris"));
 parts.add(new Part("P6", "Cog", "Red",
 new Weight(19.0, Weight.GRAMS), "London"));
 }
 }

 private void addShipments()

Page 54DB Collections9/22/2004

Using Entities with Collections

 {
 Set shipments = views.getShipmentSet();
 if (shipments.isEmpty())
 {
 System.out.println("Adding Shipments");
 shipments.add(new Shipment("P1", "S1", 300));
 shipments.add(new Shipment("P2", "S1", 200));
 shipments.add(new Shipment("P3", "S1", 400));
 shipments.add(new Shipment("P4", "S1", 200));
 shipments.add(new Shipment("P5", "S1", 100));
 shipments.add(new Shipment("P6", "S1", 100));
 shipments.add(new Shipment("P1", "S2", 300));
 shipments.add(new Shipment("P2", "S2", 400));
 shipments.add(new Shipment("P2", "S3", 200));
 shipments.add(new Shipment("P2", "S4", 200));
 shipments.add(new Shipment("P4", "S4", 300));
 shipments.add(new Shipment("P5", "S4", 400));
 }
 }

Instead of printing the key/value pairs by iterating over the Map.entrySet as done in the
prior example, this example iterates over the entities in the Map.values collection.

import com.sleepycat.collections.StoredIterator;
import java.util.Iterator;
import java.util.Set;
...
public class Sample
{
 ...
 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 printValues("Parts",
 views.getPartSet().iterator());
 printValues("Suppliers",
 views.getSupplierSet().iterator());
 printValues("Suppliers for City Paris",
 views.getSupplierByCityMap().duplicates(
 "Paris").iterator());
 printValues("Shipments",
 views.getShipmentSet().iterator());
 printValues("Shipments for Part P1",
 views.getShipmentByPartMap().duplicates(
 new PartKey("P1")).iterator());
 printValues("Shipments for Supplier S1",
 views.getShipmentBySupplierMap().duplicates(

Page 55DB Collections9/22/2004

Using Entities with Collections

 new SupplierKey("S1")).iterator());
 }
 }
 ...
}

The output of the example program is shown below.

Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
Part: number=P1 name=Nut color=Red weight=[12.0 grams] city=London
Part: number=P2 name=Bolt color=Green weight=[17.0 grams] city=Paris
Part: number=P3 name=Screw color=Blue weight=[17.0 grams] city=Rome
Part: number=P4 name=Screw color=Red weight=[14.0 grams] city=London
Part: number=P5 name=Cam color=Blue weight=[12.0 grams] city=Paris
Part: number=P6 name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
Supplier: number=S1 name=Smith status=20 city=London
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris
Supplier: number=S4 name=Clark status=20 city=London
Supplier: number=S5 name=Adams status=30 city=Athens

--- Suppliers for City Paris ---
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris

--- Shipments ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P2 supplier=S2 quantity=400
Shipment: part=P2 supplier=S3 quantity=200
Shipment: part=P2 supplier=S4 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P4 supplier=S4 quantity=300
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P5 supplier=S4 quantity=400
Shipment: part=P6 supplier=S1 quantity=100

--- Shipments for Part P1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300

Page 56DB Collections9/22/2004

Using Entities with Collections

--- Shipments for Supplier S1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P6 supplier=S1 quantity=100

Page 57DB Collections9/22/2004

Using Entities with Collections

Chapter 5. Using Tuples
Sleepycat Java Collections API tuples are sequences of primitive Java data types, for
example, integers and strings. The tuple format is a binary format for tuples that can be
used to store keys and/or values.

Tuples are useful as keys because they have a meaningful sort order, while serialized
objects do not. This is because the binary data for a tuple is written in such a way that
its raw byte ordering provides a useful sort order. For example, strings in tuples are
written with a null terminator rather than with a leading length.

Tuples are useful as keys or values when reducing the record size to a minimum is
important. A tuple is significantly smaller than an equivalent serialized object. However,
unlike serialized objects, tuples cannot contain complex data types and are not easily
extended except by adding fields at the end of the tuple.

Whenever a tuple format is used, except when the key or value class is a Java primitive
wrapper class, a tuple binding class must be implemented to map between the Java
object and the tuple fields. Because of this extra requirement, and because tuples are
not easily extended, a useful technique shown in this example is to use tuples for keys
and serialized objects for values. This provides compact ordered keys but still allows
arbitrary Java objects as values, and avoids implementing a tuple binding for each value
class.

Compare this example to the prior Entity example and you'll see that the Sample class has
not changed. When changing a database format, while new bindings are needed to map
key and value objects to the new format, the application using the objects often does
not need to be modified.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Using the Tuple Format

Tuples are sequences of primitive Java values that can be written to, and read from, the
raw data bytes of a stored record. The primitive values are written or read one at a time
in sequence, using the Sleepycat Java Collections API TupleInput and TupleOutput classes.
These classes are very similar to the standard Java DataInput and DataOutput interfaces.
The primary difference is the binary format of the data, which is designed for sorting in
the case of tuples.

For example, to read and write a tuple containing two string values, the following code
snippets could be used.

import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
TupleInput input;
TupleOutput output;

Page 58DB Collections9/22/2004

...
String partNumber = input.readString();
String supplierNumber = input.readString();
...
output.writeString(partNumber);
output.writeString(supplierNumber);

Since a tuple is defined as an ordered sequence, reading and writing order must match.
If the wrong data type is read (an integer instead of string, for example), an exception
may be thrown or at minimum invalid data will be read.

When the tuple format is used, bindings and key creators must read and write tuples using
the tuple API as shown above. This will be illustrated in the next two sections.

Using Tuples with Key Creators

Key creators were used in prior examples to extract index keys from value objects. The
keys were returned as deserialized key objects, since the serial format was used for keys.
In this example, the tuple format is used for keys and the key creators return keys by
writing information to a tuple. The differences between this example and the prior
example are:

• The TupleSerialKeyCreator base class is used instead of the SerialSerialKeyCreator
base class.

• For all key input and output parameters, the TupleInput and TupleOutput classes are
used instead of Object (representing a deserialized object).

• Instead of returning a key output object, these methods call tuple write methods such
as TupleOutput.writeString.

In addition to writing key tuples, the ShipmentByPartKeyCreator and
ShipmentBySupplierKeyCreator classes also read the key tuple of the primary key. This
is because they extract the index key from fields in the Shipment's primary key. Instead
of calling getter methods on the ShipmentKey object, as in prior examples, these methods
call TupleInput.readString. The ShipmentKey consists of two string fields that are read
in sequence.

The modified key creators are shown below: SupplierByCityKeyCreator,
ShipmentByPartKeyCreator and ShipmentBySupplierKeyCreator.

import com.sleepycat.bind.serial.TupleSerialKeyCreator;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
public class SampleDatabase
{
 ...
 private static class SupplierByCityKeyCreator
 extends TupleSerialKeyCreator

Page 59DB Collections9/22/2004

Using Tuples with Key Creators

 {
 private SupplierByCityKeyCreator(StoredClassCatalog catalog,

Class valueClass)
 {
 super(catalog, valueClass);
 }

 public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 SupplierData supplierData = (SupplierData) valueInput;
 String city = supplierData.getCity();
 if (city != null) {
 indexKeyOutput.writeString(supplierData.getCity());
 return true;
 } else {
 return false;
 }
 }
 }

 private static class ShipmentByPartKeyCreator
extends TupleSerialKeyCreator

 {
 private ShipmentByPartKeyCreator(StoredClassCatalog catalog,

Class valueClass)
 {
 super(catalog, valueClass);
 }

public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 String partNumber = primaryKeyInput.readString();
 // don't bother reading the supplierNumber
 indexKeyOutput.writeString(partNumber);
 return true;
 }
 }

 private static class ShipmentBySupplierKeyCreator
extends TupleSerialKeyCreator

 {
 private ShipmentBySupplierKeyCreator(StoredClassCatalog catalog,

Class valueClass)
 {
 super(catalog, valueClass);

Page 60DB Collections9/22/2004

Using Tuples with Key Creators

 }

public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 primaryKeyInput.readString(); // skip the partNumber
 String supplierNumber = primaryKeyInput.readString();
 indexKeyOutput.writeString(supplierNumber);
 return true;
 }
 }
 ...
}

Creating Tuple Key Bindings

Serial bindings were used in prior examples as key bindings, and keys were stored as
serialized objects. In this example, a tuple binding is used for each key since keys will
be stored as tuples. Because keys are no longer stored as serialized objects, the PartKey,
SupplierKey and ShipmentKey classes no longer implement the Serializable interface
(this is the only change to these classes and is not shown below).

For the Part key, Supplier key, and Shipment key, the SampleViews class was changed in
this example to create a custom TupleBinding instead of a SerialBinding. The custom
tuple key binding classes are defined further below.

import com.sleepycat.bind.tuple.TupleBinding;
...
public class SampleViews
{
 ...
 public SampleViews(SampleDatabase db)
 {
 ...
 ClassCatalog catalog = db.getClassCatalog();
 EntryBinding partKeyBinding =
 new PartKeyBinding();
 EntityBinding partDataBinding =
 new PartBinding(catalog, PartData.class);
 EntryBinding supplierKeyBinding =
 new SupplierKeyBinding();
 EntityBinding supplierDataBinding =
 new SupplierBinding(catalog, SupplierData.class);
 EntryBinding shipmentKeyBinding =
 new ShipmentKeyBinding();
 EntityBinding shipmentDataBinding =
 new ShipmentBinding(catalog, ShipmentData.class);

Page 61DB Collections9/22/2004

Creating Tuple Key Bindings

 EntryBinding cityKeyBinding =
 TupleBinding.getPrimitiveBinding(String.class);
 ...
 }
}

For the City key, however, a custom binding class is not needed because the key class is
a primitive Java type, String. For any primitive Java type, a tuple binding may be created
using the TupleBinding.getPrimitiveBinding static method.

The custom key binding classes, PartKeyBinding, SupplierKeyBinding and
ShipmentKeyBinding, are defined by extending the TupleBinding class. The TupleBinding
abstract class implements the EntryBinding interface, and is used for one-to-one bindings
between tuples and objects. Each binding class implements two methods for converting
between tuples and objects. Tuple fields are read using the TupleInput parameter and
written using the TupleOutput parameter.

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
public class SampleViews
{
...

private static class PartKeyBinding extends TupleBinding
 {
 private PartKeyBinding()
 {
 }

 public Object entryToObject(TupleInput input)
 {
 String number = input.readString();
 return new PartKey(number);
 }

 public void objectToEntry(Object object, TupleOutput output)
 {
 PartKey key = (PartKey) object;
 output.writeString(key.getNumber());
 }
 }
 ...
 private static class SupplierKeyBinding extends TupleBinding
 {
 private SupplierKeyBinding()
 {
 }

Page 62DB Collections9/22/2004

Creating Tuple Key Bindings

 public Object entryToObject(TupleInput input)
 {
 String number = input.readString();
 return new SupplierKey(number);
 }

 public void objectToEntry(Object object, TupleOutput output)
 {
 SupplierKey key = (SupplierKey) object;
 output.writeString(key.getNumber());
 }
 }
 ...
 private static class ShipmentKeyBinding extends TupleBinding
 {
 private ShipmentKeyBinding()
 {
 }

 public Object entryToObject(TupleInput input)
 {
 String partNumber = input.readString();
 String supplierNumber = input.readString();
 return new ShipmentKey(partNumber, supplierNumber);
 }

 public void objectToEntry(Object object, TupleOutput output)
 {
 ShipmentKey key = (ShipmentKey) object;
 output.writeString(key.getPartNumber());
 output.writeString(key.getSupplierNumber());
 }
 }
 ...
}

Creating Tuple-Serial Entity Bindings

In the prior example serial keys and serial values were used, and the SerialSerialBinding
base class was used for entity bindings. In this example, tuple keys and serial values are
used and therefore the TupleSerialBinding base class is used for entity bindings.

As with any entity binding, a key and value is converted to an entity in the
TupleSerialBinding.entryToObject method, and from an entity to a key and value in the
TupleSerialBinding.objectToKey and TupleSerialBinding.objectToData methods. But
since keys are stored as tuples, not as serialized objects, key fields are read and written
using the TupleInput and TupleOutput parameters.

Page 63DB Collections9/22/2004

Creating Tuple-Serial Entity
Bindings

The SampleViews class contains the modified entity binding classes that were defined in
the prior example: PartBinding, SupplierBinding and ShipmentBinding.

import com.sleepycat.bind.serial.TupleSerialBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
public class SampleViews
{
 ...
 private static class PartBinding extends TupleSerialBinding
 {
 private PartBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }
 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 PartData data = (PartData) dataInput;
 return new Part(number, data.getName(), data.getColor(),
 data.getWeight(), data.getCity());
 }
 public void objectToKey(Object object, TupleOutput output)
 {
 Part part = (Part) object;
 output.writeString(part.getNumber());
 }
 public Object objectToData(Object object)
 {
 Part part = (Part) object;
 return new PartData(part.getName(), part.getColor(),
 part.getWeight(), part.getCity());
 }
 }
 ...
 private static class SupplierBinding extends TupleSerialBinding
 {
 private SupplierBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }
 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 SupplierData data = (SupplierData) dataInput;
 return new Supplier(number, data.getName(),
 data.getStatus(), data.getCity());
 }

Page 64DB Collections9/22/2004

Creating Tuple-Serial Entity
Bindings

 public void objectToKey(Object object, TupleOutput output)
 {
 Supplier supplier = (Supplier) object;
 output.writeString(supplier.getNumber());
 }
 public Object objectToData(Object object)
 {
 Supplier supplier = (Supplier) object;
 return new SupplierData(supplier.getName(), supplier.getStatus(),
 supplier.getCity());
 }
 }
 ...
 private static class ShipmentBinding extends TupleSerialBinding
 {
 private ShipmentBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }
 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String partNumber = keyInput.readString();
 String supplierNumber = keyInput.readString();
 ShipmentData data = (ShipmentData) dataInput;
 return new Shipment(partNumber, supplierNumber,
 data.getQuantity());
 }
 public void objectToKey(Object object, TupleOutput output)
 {
 Shipment shipment = (Shipment) object;
 output.writeString(shipment.getPartNumber());
 output.writeString(shipment.getSupplierNumber());
 }
 public Object objectToData(Object object)
 {
 Shipment shipment = (Shipment) object;
 return new ShipmentData(shipment.getQuantity());
 }
 }
 ...
}

Page 65DB Collections9/22/2004

Creating Tuple-Serial Entity
Bindings

Using Sorted Collections

In general, no changes to the prior example are necessary to use collections having tuple
keys. Iteration of elements in a stored collection will be ordered by the sort order of the
tuples.

In addition to using the tuple format, the DatabaseType.BTREE access method must be
used when creating the database. DatabaseType.BTREE is used for the databases in all
examples. The DatabaseType.HASH access method does not support sorted keys.

Although not shown in the example, all methods of the SortedMap and SortedSet interfaces
may be used with sorted collections. For example, submaps and subsets may be created.

The output of the example program shows that records are sorted by key value.

Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
Part: number=P1 name=Nut color=Red weight=[12.0 grams] city=London
Part: number=P2 name=Bolt color=Green weight=[17.0 grams] city=Paris
Part: number=P3 name=Screw color=Blue weight=[17.0 grams] city=Rome
Part: number=P4 name=Screw color=Red weight=[14.0 grams] city=London
Part: number=P5 name=Cam color=Blue weight=[12.0 grams] city=Paris
Part: number=P6 name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
Supplier: number=S1 name=Smith status=20 city=London
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris
Supplier: number=S4 name=Clark status=20 city=London
Supplier: number=S5 name=Adams status=30 city=Athens

--- Suppliers for City Paris ---
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris

--- Shipments ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P2 supplier=S2 quantity=400
Shipment: part=P2 supplier=S3 quantity=200
Shipment: part=P2 supplier=S4 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P4 supplier=S4 quantity=300
Shipment: part=P5 supplier=S1 quantity=100

Page 66DB Collections9/22/2004

Using Sorted Collections

Shipment: part=P5 supplier=S4 quantity=400
Shipment: part=P6 supplier=S1 quantity=100

--- Shipments for Part P1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300

--- Shipments for Supplier S1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P6 supplier=S1 quantity=100

Page 67DB Collections9/22/2004

Using Sorted Collections

Chapter 6. Using Serializable Entities
In the prior examples that used entities (the Entity and Tuple examples) you may have
noticed the redundancy between the serializable value classes and the entity classes. An
entity class by definition contains all properties of the value class as well as all properties
of the key class.

When using serializable values it is possible to remove this redundancy by changing the
entity class in two ways:

• Make the entity class serializable, so it can be used in place of the value class.

• Make the key fields transient, so they are not redundantly stored in the record.

The modified entity class can then serve double-duty: It can be serialized and stored as
the record value, and it can be used as the entity class as usual along with the Java
collections API. The PartData, SupplierData and ShipmentData classes can then be
removed.

Transient fields are defined in Java as fields that are not stored in the serialized form of
an object. Therefore, when an object is deserialized the transient fields must be explicitly
initialized. Since the entity binding is responsible for creating entity objects, it is the
natural place to initialize the transient key fields.

Note that it is not strictly necessary to make the key fields of a serializable entity class
transient. If this is not done, the key will simply be stored redundantly in the record's
value. This extra storage may or may not be acceptable to an application. But since we
are using tuple keys and an entity binding class must be implemented anyway to extract
the key from the entity, it is sensible to use transient key fields to reduce the record
size. Of course there may be a reason that transient fields are not desired; for example,
if an application wants to serialize the entity objects for other purposes, then using
transient fields should be avoided.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Using Transient Fields in an Entity Class

The entity classes in this example are redefined such that they can be used both as
serializable value classes and as entity classes. Compared to the prior example there are
three changes to the Part, Supplier and Shipment entity classes:

• Each class now implements the Serializable interface.

• The key fields in each class are declared as transient.

• A package-private setKey() method is added to each class for initializing the transient
key fields. This method will be called from the entity bindings.

Page 68DB Collections9/22/2004

import java.io.Serializable;
...
public class Part implements Serializable
{
 private transient String number;
 private String name;
 private String color;
 private Weight weight;
 private String city;

 public Part(String number, String name, String color, Weight weight,
 String city)
 {
 this.number = number;
 this.name = name;
 this.color = color;
 this.weight = weight;
 this.city = city;
 }

 final void setKey(String number)
 {
 this.number = number;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final String getColor()
 {
 return color;
 }

 public final Weight getWeight()
 {
 return weight;
 }

 public final String getCity()
 {
 return city;
 }

Page 69DB Collections9/22/2004

Using Transient Fields in an
Entity Class

 public String toString()
 {
 return "Part: number=" + number +
 " name=" + name +
 " color=" + color +
 " weight=" + weight +
 " city=" + city + '.';
 }
}
...
public class Supplier implements Serializable
{
 private transient String number;
 private String name;
 private int status;
 private String city;

 public Supplier(String number, String name, int status, String city)
 {
 this.number = number;
 this.name = name;
 this.status = status;
 this.city = city;
 }

 void setKey(String number)
 {
 this.number = number;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final int getStatus()
 {
 return status;
 }

 public final String getCity()
 {
 return city;

Page 70DB Collections9/22/2004

Using Transient Fields in an
Entity Class

 }

 public String toString()
 {
 return "Supplier: number=" + number +
 " name=" + name +
 " status=" + status +
 " city=" + city + '.';
 }
}
...
public class Shipment implements Serializable
{
 private transient String partNumber;
 private transient String supplierNumber;
 private int quantity;

 public Shipment(String partNumber, String supplierNumber, int quantity)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 this.quantity = quantity;
 }

 void setKey(String partNumber, String supplierNumber)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 }

 public final String getPartNumber()
 {
 return partNumber;
 }

 public final String getSupplierNumber()
 {
 return supplierNumber;
 }

 public final int getQuantity()
 {
 return quantity;
 }

 public String toString()
 {
 return "Shipment: part=" + partNumber +
 " supplier=" + supplierNumber +

Page 71DB Collections9/22/2004

Using Transient Fields in an
Entity Class

 " quantity=" + quantity + '.';
 }
}

Using Transient Fields in an Entity Binding

The entity bindings from the prior example have been changed in this example to use the
entity object both as a value object and an entity object.

Before, the entryToObject() method combined the deserialized value object with the
key fields to create a new entity object. Now, this method uses the deserialized object
directly as an entity, and initializes its key using the fields read from the key tuple.

Before, the objectToData() method constructed a new value object using information in
the entity. Now it simply returns the entity. Nothing needs to be changed in the entity,
since the transient key fields won't be serialized.

import com.sleepycat.bind.serial.ClassCatalog;
...
public class SampleViews
{
 ...
 private static class PartBinding extends TupleSerialBinding
 {
 private PartBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }

 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 Part part = (Part) dataInput;
 part.setKey(number);
 return part;
 }

 public void objectToKey(Object object, TupleOutput output)
 {
 Part part = (Part) object;
 output.writeString(part.getNumber());
 }

 public Object objectToData(Object object)
 {
 return object;
 }
 }

Page 72DB Collections9/22/2004

Using Transient Fields in an
Entity Binding

 private static class SupplierBinding extends TupleSerialBinding
 {
 private SupplierBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }

 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 Supplier supplier = (Supplier) dataInput;
 supplier.setKey(number);
 return supplier;
 }

 public void objectToKey(Object object, TupleOutput output)
 {
 Supplier supplier = (Supplier) object;
 output.writeString(supplier.getNumber());
 }

 public Object objectToData(Object object)
 {
 return object;
 }
 }

 private static class ShipmentBinding extends TupleSerialBinding
 {
 private ShipmentBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }

 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String partNumber = keyInput.readString();
 String supplierNumber = keyInput.readString();
 Shipment shipment = (Shipment) dataInput;
 shipment.setKey(partNumber, supplierNumber);
 return shipment;
 }

 public void objectToKey(Object object, TupleOutput output)
 {
 Shipment shipment = (Shipment) object;
 output.writeString(shipment.getPartNumber());
 output.writeString(shipment.getSupplierNumber());

Page 73DB Collections9/22/2004

Using Transient Fields in an
Entity Binding

 }

 public Object objectToData(Object object)
 {
 return object;
 }
 }
}

Removing the Redundant Value Classes

The PartData, SupplierData and ShipmentData classes have been removed in this example,
and the Part, Supplier and Shipment entity classes are used in their place.

The serial formats are created with the entity classes.

public class SampleDatabase
{
 ...
 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 secConfig.setKeyCreator(new SupplierByCityKeyCreator(javaCatalog,

Supplier.class));
 ...
 secConfig.setKeyCreator(new ShipmentByPartKeyCreator(javaCatalog,

Shipment.class));
 ...
 secConfig.setKeyCreator(new ShipmentBySupplierKeyCreator(javaCatalog,

Shipment.class));
 ...
 }
}

The index key creator uses the entity class as well.

public class SampleDatabase
{
 ...

 private static class SupplierByCityKeyCreator
 extends TupleSerialKeyCreator
 {
 private SupplierByCityKeyCreator(ClassCatalog catalog,
 Class valueClass)
 {
 super(catalog, valueClass);
 }

Page 74DB Collections9/22/2004

Removing the Redundant Value
Classes

 public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {

Supplier supplier = (Supplier) valueInput;
 String city = supplier.getCity();
 if (city != null) {
 indexKeyOutput.writeString(supplier.getCity());
 return true;
 } else {
 return false;
 }
 }
 }
}

Page 75DB Collections9/22/2004

Removing the Redundant Value
Classes

Chapter 7. Summary
In summary, the Sleepycat Java Collections API tutorial has demonstrated how to create
different types of bindings, as well as how to use the basic facilities of the Sleepycat Java
Collections API: the environment, databases, secondary indices, collections, and
transactions. The final approach illustrated by the last example program, Serializable
Entity, uses tuple keys and serial entity values. Hopefully it is clear that any type of
object-to-data binding may be implemented by an application and used along with standard
Java collections.

The following table summarizes the differences between the examples in the tutorial.

CommentsEntityValueKeyExample

The shipment
program

NoSerialSerialThe Basic
Program
(page 6)

Secondary
indices

NoSerialSerialUsing Secondary
Indices
(page 32)

Combining the
key and value in
a single object

YesSerialSerialUsing Entity
Classes
(page 45)

Compact ordered
keys

YesSerialTupleUsing Tuples
(page 58)

One serializable
class for entities
and values

YesSerialTupleUsing
Serializable
Entities
(page 68)

Having completed this tutorial, you may want to explore how other types of bindings can
be implemented. The bindings shown in this tutorial are all external bindings, meaning
that the data classes themselves contain none of the binding implementation. It is also
possible to implement internal bindings, where the data classes implement the binding.

Internal bindings are called marshalled bindings in the Sleepycat Java Collections API,
and in this model each data class implements a marshalling interface. A single external
binding class that understands the marshalling interface is used to call the internal bindings
of each data object, and therefore the overall model and API is unchanged. To learn
about marshalled bindings, see the marshal and factory examples that came with your
DB distribution (you can find them in
<INSTALL_DIR>examples_java/src/com/sleepycat/examples/collections/ship where
<INSTALL_DIR> is the location where you unpacked your DB distribution). These examples
continue building on the example programs used in the tutorial. The Marshal program is
the next program following the Serializable Entity program, and the Factory program
follows the Marshal program. The source code comments in these examples explain their
differences.

Page 76DB Collections9/22/2004

Appendix A. API Notes and
Details

This appendix contains information useful to the collections programmer that is too
detailed to easily fit into the format of a tutorial. Specifically, this appendix contains the
following information:

• Using Data Bindings (page 77)

• Using the Sleepycat Java Collections API (page 81)

• Using Stored Collections (page 84)

• Serialized Object Storage (page 89)

Using Data Bindings

Data bindings determine how keys and values are represented as stored data (byte arrays)
in the database, and how stored data is converted to and from Java objects.

The selection of data bindings is, in general, independent of the selection of access
methods and collection views. In other words, any binding can be used with any access
method or collection. One exception to this rule is described under Record Number
Bindings (page 79) below.

In this document, bindings are described in the context of their use for stored data in a
database. However, bindings may also be used independently of a database to operate on☞
an arbitrary byte array. This allows using bindings when data is to be written to a file or
sent over a network, for example.

Page 77DB Collections9/22/2004

Selecting Binding Formats

For the key and value of each stored collection, you may select one of the following types
of bindings.

DescriptionOrderedBinding Format

The data is stored using a
compact form of Java
serialization, where the class
descriptions are stored
separately in a catalog
database. Arbitrary Java
objects are supported.

NoSerialBinding

The data is stored using a
series of fixed length
primitive values or zero
terminated character arrays
(strings). Class/type
evolution is not supported.

YesTupleBinding

The data is a 32-bit integer
stored in a
platform-dependent format.

YesRecordNumberBinding

The data storage format and
ordering is determined by the
custom binding
implementation.

User-definedCustom binding format

As shown in the table above, the tuple format supports built-in ordering (without specifying
a custom comparator), while the serial format does not. This means that when a specific
key order is needed, tuples should be used instead of serial data. Alternatively, a custom
BTree comparator should be specified using DatabaseConfig.setBtreeComparator(). Note
that a custom BTree comparator will usually execute more slowly than the default
byte-by-byte comparison. This makes using tuples an attractive option, since they provide
ordering along with optimal performance.

The tuple binding uses less space and executes faster than the serial binding. But once a
tuple is written to a database, the order of fields in the tuple may not be changed and
fields may not be deleted. The only type evolution allowed is the addition of fields at the
end of the tuple, and this must be explicitly supported by the custom binding
implementation.

The serial binding supports the full generality of Java serialization including type evolution.
But serialized data can only be accessed by Java applications, its size is larger, and its
bindings are slower to execute.

Page 78DB Collections9/22/2004

Using Data Bindings

Record Number Bindings

Any use of an access method with record number keys, and therefore any use of a stored
list view, requires using RecordNumberBinding as the key binding. Since Berkeley DB stores
record number keys using a platform-dependent byte order, RecordNumberBinding is
needed to store record numbers properly. See the Berkeley DB Programmer's Reference
Guide for more information on storing DB record numbers.

You may not use RecordNumberBinding except with record number keys, as determined by
the access method. Using RecordNumberBinding in other cases will create a database that☞
is not portable between platforms. When constructing the stored collection, the Sleepycat
Java Collections API will throw an IllegalArgumentException in such cases.

Selecting Data Bindings

There are two types of binding interfaces. Simple entry bindings implement the
EntryBinding interface and can be used for key or value objects. Entity bindings implement
the EntityBinding interface and are used for combined key and value objects called
entities.

Simple entry bindings map between the key or value data stored by Berkeley DB and a
key or value object. This is a simple one-to-one mapping.

Simple entry bindings are easy to implement and in some cases require no coding. For
example, a SerialBinding can be used for keys or values without writing any additional
code. A tuple binding for a single-item tuple can also be used without writing any code;
see the TupleBinding.getPrimitiveBinding() method.

Entity bindings must divide an entity object into its key and value data, and then combine
the key and value data to re-create the entity object. This is a two-to-one mapping.

Entity bindings are useful when a stored application object naturally has its primary key
as a property, which is very common. For example, an Employee object would naturally
have an EmployeeNumber property (its primary key) and an entity binding would then be
needed. Of course, entity bindings are more complex to implement, especially if their
key and data formats are different.

Note that even when an entity binding is used a key binding is also usually needed. For
example, a key binding is used to create key objects that are passed to the Map.get()
method. A key object is passed to this method even though it may return an entity that
also contains the key.

Page 79DB Collections9/22/2004

Using Data Bindings

Implementing Bindings

There are two ways to implement bindings. The first way is to create a binding class that
implements one of the two binding interfaces, EntryBinding or EntityBinding. For tuple
bindings and serial bindings there are a number of abstract classes that make this easier.
For example, you can extend TupleBinding to implement a simple binding for a tuple key
or value. Abstract classes are also provided for entity bindings and are named after the
format names of the key and value. For example, you can extend TupleSerialBinding to
implement an entity binding with a tuple key and serial value.

Another way to implement bindings is with marshalling interfaces. These are interfaces
which perform the binding operations and are implemented by the key, value or entity
classes themselves. With marshalling you use a binding which calls the marshalling interface
and you implement the marshalling interface for each key, value or entity class. For
example, you can use TupleMarshalledBinding along with key or value classes that
implement the MarshalledTupleEntry interface.

Using Bindings

Bindings are specified whenever a stored collection is created. A key binding must be
specified for map, key set and entry set views. A value binding or entity binding must be
specified for map, value set and entry set views.

Any number of bindings may be created for the same stored data. This allows multiple
views over the same data. For example, a tuple might be bound to an array of values or
to a class with properties for each object.

It is important to be careful of bindings that only use a subset of the stored data. This
can be useful to simplify a view or to hide information that should not be accessible.
However, if you write records using these bindings you may create stored data that is
invalid from the application's point of view. It is up to the application to guard against
this by creating a read-only collection when such bindings are used.

Secondary Key Creators

Secondary Key Creators are needed whenever database indices are used. For each
secondary index (SecondaryDatabase) a key creator is used to derive index key data from
key/value data. Key creators are objects whose classes implement the SecondaryKeyCreator
interface.

Like bindings, key creators may be implemented using a separate key creator class or
using a marshalling interface. Abstract key creator classes and marshalling interfaces are
provided in the com.sleepycat.bind.tuple and com.sleepycat.bind.serial packages.

Unlike bindings, key creators fundamentally operate on key and value data, not necessarily
on the objects derived from the data by bindings. In this sense key creators are a part of
a database definition, and may be independent of the various bindings that may be used
to view data in a database. However, key creators are not prohibited from using higher
level objects produced by bindings, and doing so may be convenient for some applications.

Page 80DB Collections9/22/2004

Using Data Bindings

For example, marshalling interfaces, which are defined for objects produced by bindings,
are a convenient way to define key creators.

Using the Sleepycat Java Collections API

An Environment manages the resources for one or more data stores. A Database object
represents a single database and is created via a method on the environment object.
SecondaryDatabase objects represent an index associated with a primary database. An
access method must be chosen for each database and secondary database. Primary and
secondary databases are then used to create stored collection objects, as described in
Using Stored Collections (page 84).

Using Transactions

Once you have an environment, one or more databases, and one or more stored collections,
you are ready to access (read and write) stored data. For a transactional environment,
a transaction must be started before accessing data, and must be committed or aborted
after access is complete. The Sleepycat Java Collections API provides several ways of
managing transactions.

The recommended technique is to use the TransactionRunner class along with your own
implementation of the TransactionWorker interface. TransactionRunner will call your
TransactionWorker implementation class to perform the data access or work of the
transaction. This technique has the following benefits:

• Transaction exceptions will be handled transparently and retries will be performed
when deadlocks are detected.

• The transaction will automatically be committed if your TransactionWorker.doWork()
method returns normally, or will be aborted if doWork() throws an exception.

• TransactionRunner can be used for non-transactional environments as well, allowing
you to write your application independently of the environment.

If you don't want to use TransactionRunner, the alternative is to use the
CurrentTransaction class.

1. Obtain a CurrentTransaction instance by calling the CurrentTransaction.getInstance
method. The instance returned can be used by all threads in a program.

2. Use CurrentTransaction.beginTransaction(),
CurrentTransaction.commitTransaction() and
CurrentTransaction.abortTransaction() to directly begin, commit and abort
transactions.

If you choose to use CurrentTransaction directly you must handle the DeadlockException
exception and perform retries yourself. Also note that CurrentTransaction may only be
used in a transactional environment.

Page 81DB Collections9/22/2004

Using the Sleepycat Java
Collections API

The Sleepycat Java Collections API supports nested transactions. If
TransactionRunner.run(com.sleepycat.collections.TransactionWorker) or
CurrentTransaction.beginTransaction(), is called while another transaction is active,
a child transaction is created. When
TransactionRunner.run(com.sleepycat.collections.TransactionWorker)returns, or when
CurrentTransaction.commitTransaction() or CurrentTransaction.abortTransaction()
is called, the parent transaction becomes active again. Note that because only one
transaction is active per-thread, it is impossible to accidentally use a parent transaction
while a child transaction is active.

The Sleepycat Java Collections API supports transaction auto-commit. If no transaction
is active and a write operation is requested for a transactional database, auto-commit is
used automatically.

The Sleepycat Java Collections API also supports transaction dirty-read via the
StoredCollections class. When dirty-read is enabled for a collection, data will be read
that has been modified by another transaction but not committed. Using dirty-read can
improve concurrency since reading will not wait for other transactions to complete. For
a non-transactional container, dirty-read has no effect. See StoredCollections for how
to create a dirty-read collection.

Transaction Rollback

When a transaction is aborted (or rolled back) the application is responsible for discarding
references to any data objects that were modified during the transaction. Since the
Sleepycat Java Collections API treats data by value, not by reference, neither the data
objects nor the Sleepycat Java Collections API objects contain status information indicating
whether the data objects are 1- in sync with the database, 2- dirty (contain changes that
have not been written to the database), 3- stale (were read previously but have become
out of sync with changes made to the database), or 4- contain changes that cannot be
committed because of an aborted transaction.

For example, a given data object will reflect the current state of the database after
reading it within a transaction. If the object is then modified it will be out of sync with
the database. When the modified object is written to the database it will then be in sync
again. But if the transaction is aborted the object will then be out of sync with the
database. References to objects for aborted transactions should no longer be used. When
these objects are needed later they should be read fresh from the database.

When an existing stored object is to be updated, special care should be taken to read the
data, then modify it, and then write it to the database, all within a single transaction.
If a stale data object (an object that was read previously but has since been changed in
the database) is modified and then written to the database, database changes may be
overwritten unintentionally.

When an application enforces rules about concurrent access to specific data objects or
all data objects, the rules described here can be relaxed. For example, if the application
knows that a certain object is only modified in one place, it may be able to reliably keep
a current copy of that object. In that case, it is not necessary to reread the object before

Page 82DB Collections9/22/2004

Using the Sleepycat Java
Collections API

updating it. That said, if arbitrary concurrent access is to be supported, the safest approach
is to always read data before modifying it within a single transaction.

Similar concerns apply to using data that may have become stale. If the application
depends on current data, it should be read fresh from the database just before it is used.

Selecting Access Methods

For each data store and secondary index, you must choose from one of the access methods
in the table below. The access method determines not only whether sorted keys or
duplicate keys are supported, but also what types of collection views may be used and
what restrictions are imposed on the collection views.

DatabaseConfig MethodDatabase
Type

Record
Numbers

DuplicatesOrderedAccess Method

NoneBTREENoNoYesBTREE-UNIQUE

setUnsortedDuplicatesBTREENoYes,
Unsorted

YesBTREE-DUP

setSortedDuplicatesBTREENoYes,
Sorted

YesBTREE-DUPSORT

setBtreeRecordNumbersBTREEYes,
Renumbered

NoYesBTREE-RECNUM

NoneHASHNoNoNoHASH-UNIQUE

setUnsortedDuplicatesHASHNoYes,
Unsorted

NoHASH-DUP

setSortedDuplicatesHASHNoYes,
Sorted

NoHASH-DUPSORT

NoneQUEUEYes, FixedNoYesQUEUE

NoneRECNOYes, FixedNoYesRECNO

setRenumberingRECNOYes,
Renumbered

NoYesRECNO-RENUMBER

Please see the Berkeley DB Programmer's Reference Guide for more information on access
method configuration.

Access Method Restrictions

The restrictions imposed by the access method on the database model are:

• If keys are ordered then data may be enumerated in key order and key ranges may be
used to form subsets of a data store. The SortedMap and SortedSet interfaces are
supported for collections with ordered keys.

• If duplicates are allowed then more than one value may be associated with the same
key. This means that the data store cannot be strictly considered a map — it is really

Page 83DB Collections9/22/2004

Using the Sleepycat Java
Collections API

a multi-map. See Using Stored Collections (page 84) for implications on the use of
the collection interfaces.

• If duplicate keys are allowed for a data store then the data store may not have
secondary indices.

• For secondary indices with duplicates, the duplicates must be sorted. This restriction
is imposed by the Sleepycat Java Collections API.

• With sorted duplicates, all values for the same key must be distinct.

• If duplicates are unsorted, then values for the same key must be distinct.

• If record number keys are used, the the number of records is limited to the maximum
value of an unsigned 32-bit integer.

• If reocrd number keys are renumbered, then standard List add/remove behavior is
supported but concurrency/performance is reduced.

See Using Stored Collections (page 84) for more information on how access methods
impact the use of stored collections.

Using Stored Collections

When a stored collection is created it is based on either a Database or a SecondaryDatabase.
When a database is used, the primary key of the database is used as the collection key.
When a secondary database is used, the index key is used as the collection key. Indexed
collections can be used for reading elements and removing elements but not for adding
or updating elements.

Stored Collection and Access Methods

The use of stored collections is constrained in certain respects as described below. Most
of these restrictions have to do with List interfaces; for Map interfaces, most all access
modes are fully supported since the Berkeley DB model is map-like.

• SortedSet and SortedMap interfaces may only be used if keys are ordered. This means
ordered keys are required for creating a StoredSortedEntrySet, StoredSortedKeySet,
StoredSortedMap, or StoredSortedValueSet.

• All iterators for stored collections implement the ListIterator interface as well as
the Iterator interface. ListIterator.hasPrevious() and ListIterator.previous()
work in all cases. However, the following ListIterator method behavior is dependent
on the access method.

• ListIterator.nextIndex() and ListIterator.previousIndex() only work when
record number keys are used, and throw UnsupportedOperationExceptionotherwise.

• ListIterator.add() inserts before the current position and renumbers following
keys if the RECNO-RENUMBER access method is used.

Page 84DB Collections9/22/2004

Using Stored Collections

• For all access methods other than RECNO-RENUMBER:

• ListIterator.add() throws UnsupportedOperationException if duplicates are
not allowed.

• ListIterator.add() inserts a duplicate before the current position if duplicates
are unsorted.

• ListIterator.add() inserts a duplicate in sorted order if duplicates are sorted.

• ListIterator.set() throws UnsupportedOperationException if sorted duplicates
are configured, since updating with sorted duplicates would change the iterator
position.

• Map.Entry.setValue() throws UnsupportedOperationException if duplicates are sorted.

• Only the access methods that use a record number key may be used with a List view.

• To create a stored List that supports the List.add() method, only the
RECNO-RENUMBER access method may be used.

• For List access methods that do not support List.add() (RECNO, QUEUE, and
BTREE-RECNUM):

• List.add() and ListIterator.add() always throw UnsupportedOperationException.

• List.remove() and ListIterator.remove() do not cause list indices to be
renumbered. However, iterators will skip the removed values.

For these access methods, stored Lists are most useful as read-only collections where
indices are not required to be sequential.

• When duplicates are allowed the Collection interfaces are modified in several ways
as described in the next section.

Stored Collections Versus Standard Java Collections

Stored collections have the following differences with the standard Java collection
interfaces. Some of these are interface contract violations.

The Java collections interface does not support duplicate keys (multi-maps or multi-sets).
When the access method allows duplicate keys, the collection interfaces are defined as
follows.

• Map.entrySet() may contain multiple Map.Entry objects with the same key.

• Map.keySet() always contains unique keys, it does not contain duplicates.

• Map.values() contains all values including the values associated with duplicate keys.

Page 85DB Collections9/22/2004

Using Stored Collections

• Map.put() appends a duplicate if the key already exists rather than replacing the
existing value, and always returns null.

• Map.remove() removes all duplicates for the specified key.

• Map.get() returns the first duplicate for the specified key.

• StoredMap.duplicates() is an additional method for returning the values for a given
key as a Collection.

Other differences are:

• All iterators for stored collections must be explicitly closed with
StoredIterator.close(). The static method
StoredIterator.close(java.util.Iterator) allows calling close for all iterators
without harm to iterators that are not from stored collections, and also avoids casting.
If a stored iterator is not closed, unpredictable behavior including process death may
result.

• Collection.size() and Map.size() always throws UnsupportedOperationException. This
is because the number of records in a database cannot be determined reliably or
cheaply.

• Because the size() method cannot be used, the bulk operation methods of standard
Java collections cannot be passed stored collections as parameters, since the
implementations rely on size(). However, the bulk operation methods of stored
collections can be passed standard Java collections as parameters.
storedCollection.addAll(standardCollection) is allowed while
standardCollection.addAll(storedCollection) is not allowed. This restriction applies
to the standard collection constructors that take a Collection parameter (copy
constructors), the Map.putAll() method, and the following Collection methods: addAll(),
containsAll(), removeAll() and retainAll().

• The ListIterator.nextIndex() method returns Integer.MAX_VALUE for stored lists
when positioned at the end of the list, rather than returning the list size as specified
by the ListIterator interface. Again, this is because the database size is not available.

• Comparator objects cannot be used and the SortedMap.comparator() and
SortedSet.comparator() methods always return null. The Comparable interface is not
supported. However, Comparators that operate on byte arrays may be specified using
DatabaseConfig.setBtreeComparator.

• The Object.equals() method is not used to determine whether a key or value is
contained in a collection, to locate a value by key, etc. Instead the byte array
representation of the keys and values are used. However, the equals() method is called
for each key and value when comparing two collections for equality. It is the
responsibility of the application to make sure that the equals() method returns true
if and only if the byte array representations of the two objects are equal. Normally
this occurs naturally since the byte array representation is derived from the object's
fields.

Page 86DB Collections9/22/2004

Using Stored Collections

Other Stored Collection Characteristics

The following characteristics of stored collections are extensions of the definitions in the
java.util package. These differences do not violate the Java collections interface
contract.

• All stored collections are thread safe (can be used by multiple threads concurrently)
whenever the Berkeley DB Concurrent Data Store or Transactional Data Store
environment is used. Locking is handled by the Berkeley DB environment. To access
a collection from multiple threads, creation of synchronized collections using the
Collections class is not necessary except when using the Data Store environment.
Iterators, however, should always be used only by a single thread.

• All stored collections may be read-only if desired by passing false for the writeAllowed
parameter of their constructor. Creation of immutable collections using the Collections
class is not necessary.

• A stored collection is partially read-only if a secondary index is used. Specifically,
values may be removed but may not be added or updated. The following methods will
throw UnsupportedOperationException when an index is used: Collection.add(),
List.set(), ListIterator.set() and Map.Entry.setValue().

• SortedMap.entrySet() and SortedMap.keySet() return a SortedSet, not just a Set as
specified in Java collections interface. This allows using the SortedSet methods on
the returned collection.

• SortedMap.values() returns a SortedSet, not just a Collection, whenever the keys
of the map can be derived from the values using an entity binding. Note that the
sorted set returned is not really a set if duplicates are allowed, since it is technically
a collection; however, the SortedSet methods (for example, subSet()), can still be
used.

• For SortedSet and SortedMap views, additional subSet() and subMap() methods are
provided that allow control over whether keys are treated as inclusive or exclusive
values in the key range.

• Keys and values are stored by value, not by reference. This is because objects that
are added to collections are converted to byte arrays (by bindings) and stored in the
database. When they are retrieved from the collection they are read from the database
and converted from byte arrays to objects. Therefore, the object reference added to
a collection will not be the same as the reference later retrieved from the collection.

• A runtime exception, RuntimeExceptionWrapper, is thrown whenever database
exceptions occur which are not runtime exceptions. The
RuntimeExceptionWrapper.getCause() method can be called to get the underlying
exception.

• All iterators for stored collections implement the ListIterator interface as well as
the Iterator interface. This is to allow use of the ListIterator.hasPrevious() and

Page 87DB Collections9/22/2004

Using Stored Collections

ListIterator.previous() methods, which work for all collections since Berkeley DB
provides bidirectional cursors.

• All stored collections have a StoredCollection.iterator(boolean) method that allows
creating a read-only iterator for a writable collection. For the standard
Collection.iterator() method, the iterator is read-only only when the collection is
read-only. Read-only iterators are important for using the Berkeley DB Concurrent
Data Store environment, since only one write cursors may be open at one time.

• Iterator stability for stored collections is greater than the iterator stability defined
by the Java collections interfaces. Stored iterator stability is the same as the cursor
stability defined by Berkeley DB.

• When an entity binding is used, updating (setting) a value is not allowed if the key in
the entity is not equal to the original key. For example, calling Map.put() is not allowed
when the key parameter is not equal to the key of the entity parameter. Map.put(),
List.set(), ListIterator.set(), and Map.Entry.setValue() will throw
IllegalArgumentException in this situation.

• Adding and removing items from stored lists is not allowed for sublists. This is simply
an unimplemented feature and may be changed in the future. Currently for sublists
the following methods throw UnsupportedOperationException: List.add(),
List.remove(), ListIterator.add() and ListIterator.remove().

• The StoredList.append(java.lang.Object) and StoredMap.append(java.lang.Object)
extension methods allows adding a new record with an automatically assigned key.
Record number assignment by the database itself is supported for QUEUE, RECNO and
RECNO-RENUMBER databases. An application-defined PrimaryKeyAssigner is used to
assign the key value.

Why Java Collections for Berkeley DB

The Java collections interface was chosen as the best Java API for DB given these
requirements:

1. Provide the Java developer with an API that is as familiar and easy to use as possible.

2. Provide access to all, or a large majority, of the features of the underlying Berkeley
DB storage system.

3. Compared to the DB API, provide a higher-level API that is oriented toward Java
developers.

4. For ease of use, support object-to-data bindings, per-thread transactions, and some
traditional database features such as foreign keys.

5. Provide a thin layer that can be thoroughly tested and which does not significantly
impact the reliability and performance of DB.

Page 88DB Collections9/22/2004

Using Stored Collections

Admittedly there are several things about the Java Collections API that don't quite fit
with DB or with any transactional database, and therefore there are some new rules for
applying the Java Collections API. However, these disadvantages are considered to be
smaller than the disadvantages of the alternatives:

• A new API not based on the Java Collections API could have been designed that maps
well to DB but is higher-level. However, this would require designing an entirely new
model. The exceptions for using the Java Collections API are considered easier to learn
than a whole new model. A new model would also require a long design stabilization
period before being as complete and understandable as either the Java Collections
API or the DB API.

• The ODMG API or another object persistence API could have been implemented on top
of DB. However, an object persistence implementation would add much code and
require a long stabilization period. And while it may work well for applications that
require object persistence, it would probably never perform well enough for many
other applications.

Serialized Object Storage

Serialization of an object graph includes class information as well as instance information.
If more than one instance of the same class is serialized as separate serialization operations
then the class information exists more than once. To eliminate this inefficiency the
StoredClassCatalog class will store the class format for all database records stored using
a SerialBinding. Refer to the ship sample code for examples (the class SampleDatabase
in
examples_java/src/com/sleepycat/examples/collections/ship/basic/SampleDatabase.java
is a good place to start).

Page 89DB Collections9/22/2004

Serialized Object Storage

	Berkeley DB Collections Tutorial
	Table of Contents
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction
	Features
	Developing a Sleepycat Collections Application
	Tutorial Introduction

	Chapter 2. The Basic Program
	Defining Serialized Key and Value Classes
	Opening and Closing the Database Environment
	Opening and Closing the Class Catalog
	Opening and Closing Databases
	Creating Bindings and Collections
	Implementing the Main Program
	Using Transactions
	Adding Database Items
	Retrieving Database Items
	Handling Exceptions

	Chapter 3. Using Secondary Indices
	Opening Secondary Key Indices
	More Secondary Key Indices
	Creating Indexed Collections
	Retrieving Items by Index Key

	Chapter 4. Using Entity Classes
	Defining Entity Classes
	Creating Entity Bindings
	Creating Collections with Entity Bindings
	Using Entities with Collections

	Chapter 5. Using Tuples
	Using the Tuple Format
	Using Tuples with Key Creators
	Creating Tuple Key Bindings
	Creating Tuple-Serial Entity Bindings
	Using Sorted Collections

	Chapter 6. Using Serializable Entities
	Using Transient Fields in an Entity Class
	Using Transient Fields in an Entity Binding
	Removing the Redundant Value Classes

	Chapter 7. Summary
	Appendix A. API Notes and Details
	Using Data Bindings
	Selecting Binding Formats
	Record Number Bindings
	Selecting Data Bindings
	Implementing Bindings
	Using Bindings
	Secondary Key Creators

	Using the Sleepycat Java Collections API
	Using Transactions
	Transaction Rollback
	Selecting Access Methods
	Access Method Restrictions

	Using Stored Collections
	Stored Collection and Access Methods
	Stored Collections Versus Standard Java Collections
	Other Stored Collection Characteristics
	Why Java Collections for Berkeley DB

	Serialized Object Storage

