Getting Started

with Berkeley DB
for Java

-

SLLLPU(HT@
(0ETWAR

Makers of Berkeley DB

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please write to <support @l eepycat . conp.

Published 9/22/2004

http://www.sleepycat.com/download/oslicense.html

Table of Contents

o =Tl iv
Conventions Used in this BOOKc.uviriiiiiiiiiiiiiiiii e e e iv

1. Introduction to Berkeley DBuveiiiiiiiiiiiiiiiiiiiteeieeiiaeeeeeeennneeeeecennnnnaeens 1
ADBOUL THhis MaNUAL «..vennet it e e e e e e erenaeeeenaesaannesannes 2
Berkeley DB CONCEPLS tivviinetetiiaiiieeetereeiieeeeeesennneeeeesessnassesesensnsessssanns 2
ACCESS METNOAS ..eeiieiiii it et e et e e e e ranaeeranas 4
Selecting Access Methodseviiiiiiiiiiiiiiiiiii it ieeeiieeeeeennnnaees 4

Choosing between BTree and Hashc.vvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeennnns 5

Choosing between Queue and RECNOuvvviiiiiiiiineiiiiiiiieeeeeeennnneneenns 5

Database Limits and Portabilityceeiviiiieiiiiiiiiiiiiiiiiiiiiii i eeeeenanes 6

o T o o 0 0= 6

(S Cel= oY (o] Tl o F- 1o Ta |11 1 - E P PP 7
o = A 8
Getting and USING DB ..viiiiiiiiitiiiiiiiteeeeeiieeeeeeeenaeeeeeessnnneseesesnnneneens 8

2 D - Y - oY= Y P 9
OPENING Databases teveuuuueretieiiiieteeeeeeiieeeeeeeeerneeeeeeessneeeeesesnnnnssesesennnnes 9
ClOSTNG DAt@baSES .uvveeeereiietettereiieeeeeeeiineeeeeeenenseeeesesssnnssssessnnnnsaseenns 10
Database Properties c.o.uueeeeieiiiieetteeiiieeeeeeeiiaeeeeesesrnnaeeesessnnnsessesannnes 11
Administrative Methodsc.eeiriiiiiii i i e aees 12
Error Reporting FUNCEIONSiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieiiiirnnnnnnnennennnnnnnns 13
Managing Databases in ENVIrONMENTSveeeiiiiiiieeeiereiiineeeeeeennnneeeeeesnnnnnes 14
Database EXamPLe ...uueiiiiiiiiiiiiiiiieeeeeeiieeeeeeeernneeseessrnneeeesesnnnaneess 16

3. Database RECOIAS ...uvvrnetiiittiiitererteeereeeetereanterenneeeennerennnerannnesannesnnn 19
Using Database RECOIAS . .uuueiiiiiiiiittiiiiiiieteeeeiieeeeeeeesnneeeeesennnneesesanns 19
Reading and Writing Database ReCOrdsciiviiiieiiiiiiienieeneiinneeeeeeennnnnes 20
Writing Records to the Databaseccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinnes 21

Getting Records from the Databasecivviveiiiiiiiiiieiiiniiiieeeeenennnns 22

Deleting RECOIAS .uvviiiiiiiititieiiiieteeeeiieeeeeesennereeeesesnnneseesssnnnnes 23

Data PersisteNCE ..iviueiiiiitiiei e et eeeeeeterenaterannreeanaerennnenes 24

USING The BIND APIS .eiiiitiiiiiiiietiieiieeeeeeennneeeeeseesnnesessessnnnsessananns 25
Numerical and String ObJECES ..uvviiiiiiiiiiiiiiiiieiiiiiieeeeeeinneeeeeanns 25
Serializeable COmMPpLlex ObJeCtS «ivvevirreiiiiiiiiiieereiiiieeeeeeenieeeeeeaannns 27

USAZE CaVEALS tiiiiiietetieeeiineeeeeeeninereeeesenneeeeesennnesessennnnnnes 28

Serializing ObJECES vvviiirriiitiiiiiiiieeeeiiieeerenenareeeesannnneaeens 28

Deserializing ObjJeCtS c.uuueeiiiiiiiiiiiiiiiiiiiiiieeiiieeeeeenieeeeeaannns 31

Custom Tuple Bindings ..cceieiiieeiiiiiiiiieeeieiiieeeeeeeenneeeeeeennneseeeanns 32

Database Usage EXampPle .oiiiiiieeiiiiiiiiiiiiiiieeeeeeeiieeeeeeesnnneeesssennnnnes 35

4, USING CUMSOIS 1uveeereenueneeeesennueeeeeessnsaseseesssnssassesesnnssssssssnsassssssssnnnnssens 47
Opening and CloSING CUMSOTS viviieinueeeeieeeiieeeeeeeenreeeeeesesrnnesessessnnssessesanns 47
Getting Records Using the CUISOreviiiiiiieeteiieiieeeeereninneeeeresennaneesenanns 48
Searching for RECOIAS ..vviiiiietitieiiiiiteiiieeeeeeineeeeeessnnaneeeenanns 50

Working with Duplicate ReCOrdscueeeiiiiiiiniiiiiiiiiiieeeneiiieneeeaennns 53

Putting Records USING CUISOIS ...ueeeeieeiiiueeeeeeenieeeeeesesraseeeeeessnnssessasannnes 55
Deleting Records USING CUISOIS ...uuueeeeieeenrueeeeeeeenreeeeeesessnseeeesasnnnnsesesanns 57
Replacing Records USING CUISOIS .uueiieriieeeeeeeeiiueeeeeesenaeeeeeeessnnsseecasnnnnes 58

O] o]l o 11 1] (- PP PP 59

9/22/2004 Getting Started with DB Page ii

5. SecoNdary Databases ...ueeeeeeieeetieiueereieeeeneeeenneerereeerseeeesneerenneeeonnseennes 64

Opening and Closing Secondary Databasesccvveiiiieiienieieeiieeenneennnnennns 64
Implementing KeY Creators ...iieeeieiieeerieeeeeieeeeseeeesneeesnaeeesnaeessneeesnnees 67
Secondary Database Propertiescieeeeiiiiiiriieiiiiieieiteneneeeeneeeenneenannees 70
Reading Secondary Databaseseeieeeeiriieeirnietieneeieneeeenneeeennecesnaeeeoneees 70
Deleting Secondary Database RECOrdScveeviuiieiieeiniieeinieeeeineeeeneeeennnens 71
USING SECONAANY CUIMSOIS uviieinetieenteeennteeaneeeesneeeenneeeennseesnessesnssesnnseenns 72
DL L= 0T HY N o) [o - TP 73
USING JOTN CUMSOIS «eieenetttiiieiitetteeenaneeeeeeennaneesssessannesssessnnnnesss 74
JOINCUISOr Properties ..cvveiiiiiiiiiiiiiieiiietreeeiineeeseeeananeesseannas 77
Secondary Database EXampPle ..ccuueieeieiieieeiritierieeerieeeeeneeeenneeesnneeennnees 77
Opening Secondary Databases with MyDbscccvvveiiiiiiiiiiiniieinnnnen. 79
Using Secondary Databases with ExampleDatabaseReadc....c...... 82

6. Database Configurationceueeeeieeieeietiereeeeineeeeieeeeseeeesneeeenneeesneesenneeenns 86
Setting the Page Size ..vcviiiiiiiiiiiiiiii it e e ereeeeeeeeenaeeaanaees 86
OVEITlOW PagES .viinntiiiiitiiiitieiiteteiteeaieeeeaeerenneerenaeeesneeeenneesanns 86
LOCKING . vtiettieitt it eeeieteeeeeeeanteeenaeeeaneeeanneeeanneeesnnseesnnesenneeens 87

(O 2 i (el =] o Ty A PP PP PPN 88
Page Sizing AdVICE ..iiiiniiiiiiiiiii ittt eereieeeeneeeeeneeeanaaes 88
Selecting the Cache SizZe ...iiiieiiiiiiiiiii ittt ieei e er e eeneeeeeeaeanas 89
BTree Configurationieeeeieieiiiietieiietieitereneeereneeeenneerenneessnaeeenneasanns 89
Allowing DUplicate RECOIAS ...uuiirrneiieittieitereieeeeereerenneerenaeeesneeeanns 90
Sorted DUPLICATES vivuriieietiiiiieieiieeeeieeeneeeenneeeanneeannaeens 90

Unsorted DUPLICAtES .uveeueiieintiriietieeieeeeneeeenneeeeneeeesneeeanneeenns 90
Configuring a Database to Support Duplicatescccevveereneeennnenn. 91

Setting Comparison FUNCLIONS ...uueueeiiiiiiiiiiiiiiiiiiiiiiieeiiieeneeeanns 92
Creating Java Comparatorsieeeieeeeerierinieeireiennnneeereennnneeenss 93

9/22/2004

Getting Started with DB Page iii

Preface

Welcome to Berkeley DB (DB). This document introduces DB, version 4.3. It is intended
to provide a rapid introduction to the DB API set and related concepts. The goal of this
document is to provide you with an efficient mechanism with which you can evaluate DB
against your project's technical requirements. As such, this document is intended for Java
developers and senior software architects who are looking for an in-process data

management solution. No prior experience with Sleepycat technologies is expected or
required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example: "The
Dat abase() constructor returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a nonospaced font on a shaded background. For
example:

i nport com sl eepycat . db. Dat abaseConfi g;

Il Al'low the database to be created.
Dat abaseConfi g nyDbConfig = new Dat abaseConfi g();
myDbConfi g. set Al l owCreate(true);

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in nonospaced bol d font. For example:

i nport com sl eepycat . db. Dat abase;
i nport com sl eepycat . db. Dat abaseConfi g;

I/ Alow the database to be created.

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myDbConfi g. set Al | owCreate(true);

Dat abase nyDb = new Dat abase("nydb. db", null, nyDbConfig);

|:| Finally, notes of interest are represented using a note block such as this.

9/22/2004 Getting Started with DB Page iv

Chapter 1. Introduction to Berkeley DB

Welcome to Sleepycat's Berkeley DB (DB). DB is a general-purpose embedded database
engine that is capable of providing a wealth of data management services. It is designed
from the ground up for high-throughput applications requiring in-process, bullet-proof
management of mission-critical data. DB can gracefully scale from managing a few bytes
to terabytes of data. For the most part, DB is limited only by your system's available
physical resources.

Because DB is an embedded database engine, it is extremely fast. You compile and link
it into your application in the same way as you would any third-party library. This means
that DB runs in the same process space as does your application, allowing you to avoid

the high cost of interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent.
It requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways
of organizing your data in its databases. Known as access methods, each such data

organization mechanism provides different characteristics that are appropriate for different
data management profiles. (Note that this manual focuses almost entirely on the BTree
access method as this is the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which
can be used to extend DB's capabilities. For example, many applications require
write-protection of their data so as to ensure that data is never left in an inconsistent
state for any reason (such as software bugs or hardware failures). For those applications,
a transaction subsystem can be enabled and used to transactionally protect database
writes.

The list of operating systems on which DB is available is too long to detail here. Suffice
to say that it is available on all major commercial operating systems, as well as on many
embedded platforms.

Finally, DB is available in a wealth of programming languages. Sleepycat officially supports
DB in C, C++, and Java, but the library is also available in many other languages, especially
scripting languages such as Perl and Python.

|:| Before going any further, it is important to mention that DB is not a relational database
(although you could use it to build a relational database). Out of the box, DB does not
provide higher-level features such as triggers, or a high-level query language such as SQL.
Instead, DB provides just those minimal APIs required to store and retrieve your data as
efficiently as possible.

9/22/2004 Getting Started with DB Page 1

About This Manual

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual
provides a step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces DB environments, databases, database records, and
storage and retrieval of database records. This book also introduces cursors and their
usage, and it describes secondary databases.

For the most part, this manual focuses on the BTree access method. A chapter is given
at the end of this manual that describes some of the concepts involving BTree usage, such
as duplicate record management and comparison routines.

Examples are given throughout this book that are designed to illustrate API usage. At the
end of each chapter, a complete example is given that is designed to reinforce the concepts
covered in that chapter. In addition to being presented in this book, these final programs
are also available in the DB software distribution. You can find them in

DB I NSTALL/ exanpl es_j aval src/ con sl eepycat / exanpl es/ db/ GettingStarted
where DB_| NSTALL is the location where you placed your DB distribution.

This book uses the Java programming languages for its examples. Note that versions of
this book exist for the C and C++ languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the larger concepts that you will
encounter when building a DB application.

Conceptually, DB databases contain records. Logically each record represents a single
entry in the database. Each such record contains two pieces of information: a key and a
data. This manual will on occaison describe a a record’s key or a record’s data when it is
necessary to speak to one or the other portion of a database record.

Because of the key/data pairing used for DB databases, they are sometimes thought of
as a two-column table. However, data (and sometimes keys, depending on the access
method) can hold arbitrarily complex data. Frequently, C structures and other such
mechanisms are stored in the record. This effectively turns a 2-column table into a table
with n columns, where n-1 of those columns are provided by the structure’s fields.

Note that a DB database is very much like a table in a relational database system in that
most DB applications use more than one database (just as most relational databases use
more than one table).

Unlike relational systems, however, a DB database contains a single collection of records
organized according to a given access method (BTree, Queue, Hash, and so forth). In a
relational database system, the underlying access method is generally hidden from you.

9/22/2004 Getting Started with DB Page 2

Berkeley DB Concepts

In any case, frequently DB applications are designed so that a single database stores a
specific type of data (just as in a relational database system, a single table holds entries
containing a specific set of fields). Because most applications are required to manage
multiple kinds of data, a DB application will often use multiple databases.

For example, consider an accounting application. This kind of an application may manage
data based on bank accounts, checking accounts, stocks, bonds, loans, and so forth. An
accounting application will also have to manage information about people, banking
institutions, customer accounts, and so on. In a traditional relational database, all of
these different kinds of information would be stored and managed using a (probably very)
complex series of tables. In a DB application, all of this information would instead be
divided out and managed using multiple databases.

DB applications can efficiently use multiple databases using an optional mechanism called
an environment. For more information, see Environments (page 6).

You interact with most DB APIs using special structures that contain pointers to functions.
These callbacks are called methods because they look so much like a method on a C++
class. The variable that you use to access these methods is often referred to as a handle.
For example, to use a database you will obtain a handle to that database.

Retrieving a record from a database is sometimes called getting the record because the
method that you use to retrieve the records is called get () . Similarly, storing database
records is sometimes called putting the record because you use the put () method to do
this.

When you store, or put, a record to a database using its handle, the record is stored
according to whatever sort order is in use by the database. Sorting is mostly performed
based on the key, but sometimes the data is considered too. If you put a record using a
key that already exists in the database, then the existing record is replaced with the new
data. However, if the database supports duplicate records (that is, records with identical
keys but different data), then that new record is stored as a duplicate record and any
existing records are not overwritten.

If a database supports duplicate records, then you can use a database handle to retrieve
only the first record in a set of duplicate records.

In addition to using a database handle, you can also read and write data using a special
mechanism called a cursor. Cursors are essentially iterators that you can use to walk over
the records in a database. You can use cursors to iterate over a database from the first
record to the last, and from the last to the first. You can also use cursors to seek to a
record. In the event that a database supports duplicate records, cursors are the only way
you can access all the records in a set of duplicates.

Finally, DB provides a special kind of a database called a secondary database. Secondary
databases serve as an index into normal databases (called primary database to distinguish
them from secondaries). Secondary databases are interesting because DB records can
hold complex data types, but seeking to a given record is performed only based on that
record's key. If you wanted to be able to seek to a record based on some piece of

9/22/2004 Getting Started with DB Page 3

Access Methods

information that is not the key, then you enable this through the use of secondary
databases.

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to
briefly describe all of the access methods that DB makes available.

Note that an access method can be selected only when the database is created. Once
selected, actual APl usage is generally identical across all access methods. That is, while
some exceptions exist, mechanically you interact with the library in the same way
regardless of which access method you have selected.

The access method that you should choose is gated first by what you want to use as a
key, and then secondly by the performance that you see for a given access method.

The following are the available access methods:

Access Method Description

BTree Data is stored in a sorted, balanced tree structure. Both the
key and the data for BTree records can be arbitrarily complex.
That is, they can contain single values such as an integer or a
string, or complex types such as a structure. Also, although not
the default behavior, it is possible for two records to use keys
that compare as equals. When this occurs, the records are
considered to be duplicates of one another.

Hash Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily
complex data. Also, like BTree, duplicate records are optionally
supported.

Queue Data is stored in a queue as fixed-length records. Each record
uses a logical record number as its key. This access method is
designed for fast inserts at the tail of the queue, and it has a
special operation that deletes and returns a record from the
head of the queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements
in applications requiring concurrent access to the queue.

Recno Data is stored in either fixed or variable-length records. Like
Queue, Recno records use logical record numbers as keys.

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for
you database records. If you want to use arbitrary data (even strings), then you should
use either BTree or Hash. If you want to use logical record numbers (essentially integers)
then you should use Queue or Recno.

9/22/2004 Getting Started with DB Page 4

Access Methods

Once you have made this decision, you must choose between either BTree or Queue, or
Hash or Recno. This decision is described next.

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between
BTree and Hash. Both will perform just as well as the other. In this situation, you might
just as well use BTree, if for no other reason than the majority of DB applications use
BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small
portion of that data with any frequency. So what you want to consider is the data that

you will routinely use, not the sum total of all the data managed by your application.

However, as your working dataset grows to the point where you cannot fit it all into
memory, then you need to take more care when choosing your access method. Specifically,
choose:

« BTree if your keys have some locality of reference. That is, if they sort well and you
can expect that a query for a given key will likely be followed by a query for one of
its neighbors.

» Hash if your dataset is extremely large. For any given access method, DB must maintain
a certain amount of internal information. However, the amount of information that
DB must maintain for BTree is much greater than for Hash. The result is that as your
dataset grows, this internal information can dominate the cache to the point where
there is relatively little space left for application data. As a result, BTree can be forced
to perform disk 1/0 much more frequently than would Hash given the same amount
of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to
perform disk 1/0 to satisfy a random request, then Hash will definitely out perform
BTree because it has fewer internal records to search through than does BTree.

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for
the primary database key. Logical record numbers are essentially integers that uniquely
identify the database record. They can be either mutable or fixed, where a mutable
record number is one that might change as database records are stored or deleted. Fixed
logical record numbers never change regardless of what database operations are
performed.

When deciding between Queue and Recno, choose:

« Queue if your application requires high degrees of concurrency. Queue provides
record-level locking (as opposed to the page-level locking that the other access methods
use), and this can result in significantly faster throughput for highly concurrent
applications.

9/22/2004 Getting Started with DB Page 5

Database Limits and Portability

Note, however, that Queue provides support only for fixed length records. So if the
size of the data that you want to store varies widely from record to record, you should
probably choose an access method other than Queue.

» Recno if you want mutable record numbers. Queue is only capable of providing fixed
record numbers. Also, Recno provides support for databases whose permanent storage
is a flat text file. This is useful for applications looking for fast, temporary storage
while the data is being read or modified.

Database Limits and Portability

Berkeley DB provides support for managing everything from very small databases that fit
entirely in memory, to extremely large databases holding millions of records and terabytes
of data. DB databases can store up to 256 terabytes of data. Individual record keys or
record data can store up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of
differing endian-ness. Be aware, however, that portability aside, some performance issues
can crop up in the event that you are using little endian architecture. See Setting
Comparison Functions (page 92) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are
thread-safe, and they share well across multiple processes. That said, in order to allow
multiple processes to share databases and the cache, DB makes use of mechanisms that
do not work well on network-shared drives (NFS or Windows networks shares, for example).
For this reason, you cannot place your DB databases and environments on network-mounted
drives.

Environments

This manual is meant as an introduction to the Berkeley DB library. Consequently, it
describes how to build a very simple, single-threaded application. Consequently, this
manual omits a great many powerful aspects of the DB database engine that are not
required by simple applications. One of these is important enough that it warrants a brief
overview here: environments.

While environments are frequently not used by applications running in embedded
environments where every byte counts, they will be used by virutally any other DB
application requiring anything other than the bare minimum functionality. An environment
is essentially an encapsulation of one or more databases. Essentially, you open an
environment and then you open databases in that environment. When you do so, the
databases are created/located in a location relative to the environment’'s home directory.

Environments offer a great many features that a stand-alone DB database cannot offer:
» Multi-database files.

It is possible in DB to contain multiple databases in a single physical file on disk. This
is desireable for those application that open more than a few handful of databases.

9/22/2004 Getting Started with DB Page 6

Exception Handling

However, in order to have more than one database contained in a single physical file,
your application must use an environment.

Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can
be shared by all of the databases opened in the environment. The environment allows
you to enable subsystems that are designed to allow multiple threads and/or processes
to access DB databases. For example, you use an environment to enable the concurrent
data store (CDS), the locking subsystem, and/or the shared memory buffer pool.

Transactional processing

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then
subsequently to obtain transaction IDs.

High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and
then manage this subsystem.

Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal” and
"catastrophic”) through the use of the information contained in the log files.

All of these topics are described in the Berkeley DB Programmer's Reference Guide.

Exception Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with
the java.

Most DB methods throw Dat abaseExcepti on in the event of a serious error. So your DB
code must either catch this exception or declare it to be throwable. Be aware that
Dat abaseExcept i on extends j ava. | ang. Excepti on. For example:

i nport com sl eepycat . db. Dat abaseExcepti on;

try

{
// DB and other code goes here
}
cat ch(Dat abaseException e)
{
9/22/2004 Getting Started with DB Page 7

Error Returns

/1 DB error handling goes here

}

You can obtain the DB error number for a Dat abaseExcepti on by using
Dat abaseException. get Errno() . You can also obtain any error message associated with
that error using Dat abaseExcepti on. get Message() .

Error Returns

In addition to exceptions, the DB interfaces always return a value of 0 on success. If the
operation does not succeed for any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access
a file was denied, or an illegal argument was specified to one of the interfaces), DB
returns an errno value. All of the possible values of errno are greater than 0.

If the operation did not fail due to a system error, but was not successful either, DB
returns a special error value. For example, if you tried to retrieve data from the database
and the record for which you are searching does not exist, DB would return DB_NOTFOUND,
a special error value that means the requested key does not appear in the database. All
of the possible special error values are less than 0.

Getting and Using DB

You can obtain DB by visiting the Sleepycat download page:
http://www.sleepycat.com/download/index.shtml.

To install DB, untar or unzip the distribution to the directory of your choice. You will then
need to build the product binaries. For information on building DB, see

DB_INSTALL/ docs/ i ndex. ht M , where DB_INSTALL is the directory where you unpacked
DB. On that page, you will find links to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find
links for the Berkeley DB Programmer’s Tutorial and Reference Guide as well as the API
reference documentation.

9/22/2004 Getting Started with DB Page 8

http://www.sleepycat.com/download/index.shtml

Chapter 2. Databases

In Berkeley DB, a database is a collection of records. Records, in turn, consist of two
parts: key and data. That is, records consist of key/data pairings.

Conceptually, you can think of a Dat abase as containing a two-column table where column
1 contains a key and column 2 contains data. Both the key and the data are managed
using Dat abaseEnt ry class instances (see Database Records (page 19) for details on this
class). So, fundamentally, using a DB Dat abase involves putting, getting, and deleting
database records, which in turns involves efficiently managing information encapsulated
by Dat abaseEnt ry objects. The next several chapters of this book are dedicated to those
activities.

Opening Databases

You open a database by instantiating a Dat abase object.

Note that by default, DB does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

The following code fragment illustrates a database open:

package com sl eepycat . exanpl es. db. GettingStarted,;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abase;
i nport com sl eepycat . db. Dat abaseConfi g;

i nport java.io.FileNot FoundExcepti on;

Dat abase myDat abase = nul | ;

try {
[/ Open the database. Create it if it does not already exist.

Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Al l owCreat e(true);
myDat abase = new Dat abase ("sanpl eDat abase. db",
nul I,
dbConfig);
} catch (DatabaseException dbe) {
/| Exception handling goes here
} catch (FileNot FoundException fnfe) {
/| Exception handling goes here

}

9/22/2004 Getting Started with DB Page 9

Closing Databases

Closing Databases
Once you are done using the database, you must close it. You use the method to do this.

Closing a database causes it to become unusable until it is opened again. Note that you
should make sure that any open cursors are closed before closing your database. Active
cursors during a database close can cause unexpected results, especially if any of those
cursors are writing to the database. You should always make sure that all your database
accesses have completed before closing your database.

Cursors are described in Using Cursors (page 47) later in this manual.

Be aware that when you close the last open handle for a database, then by default its
cache is flushed to disk. This means that any information that has been modified in the
cache is guaranteed to be written to disk when the last handle is closed. You can manually
perform this operation using the Dat abase. sync() method, but for normal shutdown
operations it is not necessary. For more information about syncing your cache, see Data
Persistence (page 24).

The following code fragment illustrates a database close:

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abase;

try {
if (myDatabase != null) {
nmyDat abase. cl ose() ;
}

} catch (DatabaseException dbe) {
/| Exception handling goes here
}

9/22/2004 Getting Started with DB Page 10

Database Properties

Database Properties

You can set database properties using the Dat abaseConfi g class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve
the Dat abaseConf i g object used by your database using the Dat abase. get Confi g() method.

There are a large number of properties that you can set using this class (see the javadoc
for a complete listing). From the perspective of this manual, some of the more interesting
properties are:

o DatabaseConfig.set Al l owCreat e()

If true, the database is created when it is opened. If false, the database open fails if
the database does not exist. This property has no meaning if the database currently
exists. Default is f al se.

« DatabaseConfi g. set Bt reeConparat or ()

Sets the class that is used to compare the keys found on two database records. This
class is used to determine the sort order for two records in the database. For more
information, see Setting Comparison Functions (page 92).

« DatabaseConfig. set Dupl i cat eConpar at or ()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Setting Comparison Functions (page 92).

« DatabaseConfig. set SortedDuplicates()

If true, duplicate records are allowed in the database. If this value is f al se, then
putting a duplicate record into the database results in the replacement of the old
record with the new record. Note that this property can be set only at database
creation time. Default is f al se.

o DatabaseConfig. set Excl usiveCreate()

If true, the database open fails if the database currently exists. That is, the open
must result in the creation of a new database. Default is f al se.

« DatabaseConfig. set ReadOnl y()

If true, the database is opened for read activities only. Default is f al se.
o DatabaseConfig. setTruncat e()

If true, the database is truncated; that is, it is emptied of all content.
o DatabaseConfig. set Type()

Identifies the type of database that you want to create. This manual will exclusively
use Dat abaseType. BTREE.

9/22/2004 Getting Started with DB Page 11

Administrative Methods

In addition to these, there are also methods that allow you to control the 10 stream used
for error reporting purposes. These are described later in this manual.

For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

i nport java.io.FileNot FoundExcepti on;

Dat abase nyDat abase = nul | ;
try {
Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Al l owCreat e(true);
dbConfi g. set Sort edDupl i cates(true);
dbConfi g. set Type(Dat abaseType. BTREE) ;
nyDat abase = new Dat abase(" sanpl eDat abase. db",
null,
dbConfig);
} catch (DatabaseException dbe) {
/1 Exception handling goes here.
} catch (FileNot FoundException fnfe) {
/1 Exception handling goes here
}

Administrative Methods

The Dat abase class provides methods that are useful for manipulating databases. These
methods are:

« Dat abase. get Dat abaseNane()

Returns the database's name.

String dbName = nyDat abase. get Dat abaseName() ;

o Database.truncate()

Deletes every record in the database and optionally returns the number of records
that were deleted. Note that it is much less expensive to truncate a database without
counting the number of records deleted than it is to truncate and count.

int nunDi scarded =
myDat abase. truncate(nul |,
true); // If true, then the nunber of

9/22/2004 Getting Started with DB Page 12

Error Reporting Functions

Il records deleted are counted.
Systemout. println("Discarded " + nunDiscarded +
" records from database " + myDat abase. get Dat abaseNane());

Dat abase. rename()

Renames the specified database. If no value is given for the dat abase parameter, then
the entire file referenced by this method is renamed.

Never rename a database that has handles opened for it. Never rename a file that
contains databases with opened handles.

i mport java.io.FileNot FoundExcepti on;

nyDat abase. cl ose() ;

try {
myDat abase. r enanme(" nmydb. db", /| Database file to rename
nul I, /| Database to renane. Not used so
/] the entire file is renaned.
"newdb. db", /1 New nane to use.
null); /| DatabaseConfig object.

/1 None provided.
} catch (FileNot FoundException fnfe) {
/1 Exception handling goes here

}

Error Reporting Functions

To simplify error reporting and handling, the Dat abaseConfi g class offers several useful
methods.

Dat abaseConfi g. set Error Strean()

Sets the Java Qut put St reamto be used for displaying error messages issued by the DB
library.

Dat abaseConfi g. set MessageHand| er ()

Defines the message handler that is called when an error message is issued by DB. The
error prefix and message are passed to this callback. It is up to the application to
display this information correctly.

Note that the message handler must be an implementation of the
com sl eepycat . db. MessageHandl er interface.

Dat abaseConfi g. set ErrorPrefix()

Sets the prefix used to for any error messages issued by the DB library.

9/22/2004

Getting Started with DB Page 13

Managing Databases in
Environments

For example, to send all your error messages to a particular message handler, first
implement the handler:

package com sl eepycat . exanpl es. db. GettingStart ed;

i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. MessageHand| er;

public class MyMessageHandl er inplements MessageHandl er {

[/ Qur constructor does nothing
public M/MessageHandl er() {}

publ i ¢ voi d message(Environnent dbenv, String nmessage)

{
}

Il Put your special message handling code here

}

And then set up your database to use the message handler by identifying it on the
database's Dat abaseConfi g object:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Dat abaseConfi g;

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
M/MessageHandl er mmh = new MyMessageHandl er ();
myDbConfi g. set MessageHandl er (mh) ;

Managing Databases in Environments

In Environments (page 6), we introduced environments. While environments are not used
in the example built in this book, they are so commonly used for a wide class of DB
applications that it is necessary to show their basic usage, if only from a completeness
perspective.

To use an environment, you must first open it. At open time, you must identify the
directory in which it resides. This directory must exist prior to the open attempt. You
can also identify open properties, such as whether the environment can be created if it
does not already exist.

For example, to create an environment handle and open an environment:

package com sl eepycat . exanpl es. db. GettingStarted,;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;

9/22/2004 Getting Started with DB Page 14

Managing Databases in
Environments

i nport com sl eepycat . db. Envi ronnment Confi g;

inport java.io.File;
inport java.io.FileNot FoundExcepti on;

Environment nyEnv = nul | ;

File envHome = new File("/exportl/testEnv");

try {
Envi ronment Confi g envConf = new Environnment Config();
envConf. set Al | owCreate(true);

nmyEnv = new Envi ronnment (envHome, envConf);
} catch (DatabaseException de) {

/] Exception handling goes here
} catch (FileNot FoundException fnfe) {

/] Exception handling goes here

}

Once an environment is opened, you can open databases in it. Note that by default
databases are stored in the environment's home directory, or relative to that directory
if you provide any sort of a path in the database’s file name:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;

i nport com sl eepycat . db. Envi ronnment Confi g;

inport java.io.File;
i nport java.io.FileNot FoundExcepti on;

Environment nyEnv = nul | ;

Dat abase nyDb = nul | ;

File envHome = new File("/exportl/testEnv");
String dbFileName = new String("nmydb. db");

try {
Envi ronment Confi g envConf = new Environnent Config();

envConf . set Al | owCreate(true);

Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Al l owCreat e(true);

dbConfi g. set Type(Dat abaseType. BTREE) ;

9/22/2004 Getting Started with DB Page 15

Database Example

nmyEnv = new Envi ronnment (envHome, envConf);

myDb = nmyEnv. openDat abase(nul |, dbFileNane, null, dbConfig);
} catch (DatabaseException de) {

/] Exception handling goes here
} catch (FileNot FoundException fnfe) {

/] Exception handling goes here

}

When you are done with an environment, you must close it. Before you close an
environment, make sure you close any opened databases.

finally {
try {
if (myDo !'=null) {
myDb. cl ose() ;
}

if (myEnv !'= null) {
myEnv. cl ose();
}

} catch (DatabaseException de) {
/1 Exception handling goes here

}
}

Database Example

Throughout this book we will build a couple of applications that load and retrieve inventory
data from DB databases. While we are not yet ready to begin reading from or writing to
our databases, we can at least create the class that we will use to manage our databases.

Note that subsequent examples in this book will build on this code to perform the more
interesting work of writing to and reading from the databases.

Note that you can find the complete implementation of these functions in:

DB I NSTALL/ exanpl es_j aval src/ con sl eepycat / exanpl es/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

Example 2.1. MyDbs Class

To manage our database open and close activities, we encapsulate them in the MyDbs
class. There are several good reasons to do this, the mort important being that we can
ensure our databases are closed by putting that activity in the MyDbs class destructor.

To begin, we import some needed classes:

/] File: MyDbs.java
package com sl eepycat . exanpl es. db. GettingStarted,;

9/22/2004 Getting Started with DB Page 16

Database Example

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

inport java.io.FileNot FoundExcepti on;

And then we write our class declaration and provided some necessary private data
members:

public class MDbs {

/1 The databases that our application uses
private Database vendorDb = null;
private Database inventoryDb = null;

private String vendordb = "Vendor DB. db";
private String inventorydb = "l nventoryDB. db";

/1 Qur constructor does nothing
public MDbs() {}

Next we need a set up() method. This is where we configure and open our databases.

/I The setup() nethod opens all our databases

/] for us.

public void setup(String databasesHone)
throws Dat abaseException {

Dat abaseConfi g myDbConfig = new DatabaseConfig();

myDbConfi g. set Error Strean(Systemerr);
myDbConfi g. set Error Prefix("MDbs");
myDbConfi g. set Type(Dat abaseType. BTREE) ;
myDbConfi g. set Al | owCreat e(true);

Il Now open, or create and open, our databases
Il Cpen the vendors and inventory databases

try {
vendordb = dat abasesHome + "/" + vendordb;
vendor Db = new Dat abase(vendor db,
nul |,
myDbConfi g) ;

i nvent orydb
i nvent oryDb

dat abasesHone + "/" + inventorydb;
new Dat abase(i nvent orydb,

nul |,

myDbConfi g) ;
} catch(FileNot FoundException fnfe) {

9/22/2004 Getting Started with DB Page 17

Database Example

Systemerr.printIn("MDbs: " + fnfe.toString());
Systemexit(-1);

}

Finally, we provide some getter methods, and our cl ose() method.

Il getter nethods

publ i c Database get VendorDB() {
return vendor Db;

}

publ i c Database getlnventoryDB() {
return inventoryDb;
}

[/ Cose the databases
public void close() {
try {
if (vendorDb !'= null) {
vendor Db. cl ose();
1

if (inventoryDb !'= null) {
i nvent oryDb. cl ose();
1

} catch(DatabaseException dbe) {
Systemerr.println("Error closing MDbs: " +
dbe.toString());
Systemexit(-1);

9/22/2004 Getting Started with DB Page 18

Chapter 3. Database Records

DB records contain two parts — a key and some data. Both the key and its corresponding
data are encapsulated in Dat abaseEnt ry class objects. Therefore, to access a DB record,
you need two such objects, one for the key and one for the data.

Dat abaseEnt ry can hold any kind of data from simple Java primitive types to complex
Java objects so long as that data can be represented as a Java byt e array. Note that due
to performance considerations, you should not use Java serialization to convert a Java
object to a byt e array.

This chapter describes how you can convert both Java primitives and Java class objects
into and out of byt e arrays. It also introduces storing and retrieving key/value pairs from
a database. In addition, this chapter describes how you can use comparators to influence
how DB sorts its database records.

Using Database Records

Each database record is comprised of two Dat abaseEntry objects — one for the key and
another for the data. The key and data information is stored in Dat abaseEnt ry objects as
byt e arrays. Therefore, using Dat abaseEnt ry instances is mostly an exercise in efficiently
moving your keys and your data in and out of byt e arrays.

For example, to store a database record where both the key and the data are Java Stri ng
objects, you instantiate a pair of Dat abaseEnt ry objects:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

String akey = "key";
String aData = "data";

try {
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es(" UTF

Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UT
} catch (Exception e) {
/'l Exception handling goes here

)

8"));
F-8"));

)
-8

}

/] Storing the record is described later in this chapter

|:| Notice that we specify UTF- 8 when we retrieve the byt e array from our String object.
Without parameters, String. get Byt es() uses the Java system's default encoding. You should
never use a system's default encoding when storing data in a database because the encoding
can change.

9/22/2004 Getting Started with DB Page 19

Reading and Writing Database
Records

When the record is retrieved from the database, the method that you use to perform this
operation populates two Dat abaseEnt ry instances for you, one for the key and another
for the data. Assuming Java St ri ng objects, you retrieve your data from the Dat abaseEnt ry
as follows:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Dat abaseEnt ry;

/] theKey and theData are DatabaseEntry objects. Database
[l retrieval is described later in this chapter. For now,
/1 we assunme sone database get nethod has popul ated these
/'l objects for us.

/1 Use DatabaseEntry.getData() to retrieve the encapsul ated Java
Il byte array.

byte[] nyKey = theKey.getData();
byte[] nyData = theData.getData();

String key = new String(myKey);
String data = new String(nyData);

There are a large number of mechanisms that you can use to move data in and out of
byt e arrays. To help you with this activity, DB provides the bind APIs. These APIs allow
you to efficiently store both primitive data types and complex objects in byt e arrays.

The next section describes basic database put and get operations. A basic understanding
of database access is useful when describing database storage of more complex data such
as is supported by the bind APIs. Basic bind API usage is then described in Using the BIND
APIs (page 25).

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight
differences in behavior depending on whether your database supports duplicate records.
Two or more database records are considered to be duplicates of one another if they
share the same key. The collection of records sharing the same key are called a duplicates
set. In DB, a given key is stored only once for a single duplicates set.

By default, DB databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are typically used to access all of the records in the
duplicates set.

DB provides two basic mechanisms for the storage and retrieval of database key/data
pairs:

9/22/2004 Getting Started with DB Page 20

Reading and Writing Database
Records

o The Dat abase. put () and Dat abase. get () methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

» Cursors provide several methods for putting and getting database records. Cursors and
their database access methods are described in Using Cursors (page 47).

Writing Records to the Database

Records are stored in the database using whatever organization is required by the access
method that you have selected. In some cases (such as BTree), records are stored in a
sort order that you may want to define (see Setting Comparison Functions (page 92) for
more information).

In any case, the mechanics of putting and getting database records do not change once
you have selected your access method, configured your sorting routines (if any), and
opened your database. From your code's perspective, a simple database put and get is
largely the same no matter what access method you are using.

You can use the following methods to put database records:
o Database. put ()

Puts a database record into the database. If your database does not support duplicate
records, and if the provided key already exists in the database, then the currently
existing record is replaced with the new data.

« Dat abase. put NoOverwite()

Disallows overwriting (replacing) an existing record in the database. If the provided
key already exists in the database, then this method returns Oper at i onSt at us. KEYEXI ST
even if the database supports duplicates.

o Dat abase. put NoDupDat a()

Puts a database record into the database. If the provided key and data already exists
in the database (that is, if you are attempting to put a record that compares equally
to an existing record), then this returns Oper ati onSt at us. KEYEXI ST.

When you put database records, you provide both the key and the data as Dat abaseEnt ry
objects. This means you must convert your key and data into a Java byt e array. For
example:

package com sl eepycat . exanpl es. db. GettingStart ed,;

i nport com sl eepycat . db. Dat abaseEnt ry;
i nport com sl eepycat . db. Dat abase;

/| Database opens onitted for clarity.
/| Databases nust NOT be opened read-only.

9/22/2004 Getting Started with DB Page 21

Reading and Writing Database
Records

String aKey = "nyFirstKey";
String aData = "nyFirstData";

try {
Dat abaseEntry theKey = new Dat abaseEntry(akKey. get Byt es(" UTF-

F
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UT
nyDat abase. put (nul |, theKey, theData);
} catch (Exception e) {
/] Exception handling goes here

}
Getting Records from the Database

The Dat abase class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever
return the first record in a duplicate set. For this reason, if your database supports
duplicates, you should use a cursor to retrieve records from it. Cursors are described in
Using Cursors (page 47).

You can use either of the following methods to retrieve records from the database:
« Database. get ()

Retrieves the record whose key matches the key provided to the method. If no records
exists that uses the provided key, then Qperati onSt at us. NOTFOUND is returned.

« Dat abase. get Sear chBot h()

Retrieve the record whose key matches both the key and the data provided to the
method. If no record exists that uses the provided key and data, then
Oper ati onSt at us. NOTFOUND is returned.

Both the key and data for a database record are returned as Dat abaseEnt ry objects. These
objects are passed as parameter values to the Dat abase. get () method.

In order to retrieve your data once Dat abase. get () has completed, you must retrieve the
byt e array stored in the Dat abaseEnt ry and then convert that byt e array back to the
appropriate datatype. For example:

package com sl eepycat . exanpl es. db. GettingStart ed,;
i nport com sl eepycat . db. Dat abaseEnt ry;
i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. LockMode;
i mport com sl eepycat . db. Operati onSt at us;

Dat abase myDat abase = nul | ;

9/22/2004 Getting Started with DB Page 22

Reading and Writing Database
Records

/| Database opens onitted for clarity.
/| Database may be opened read-only.

String aKey = "nyFirstKey";

try {
/] Create a pair of DatabaseEntry objects. theKey

/] is used to performthe search. theData is used

/] to store the data returned by the get() operation.

Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Performthe get.
i f (nyDatabase.get(null, theKey, theData, LockMbde.DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

Il Recreate the data String.
byte[] retData = theData.getData();
String foundData = new String(retData);
Systemout. println("For key: '" + aKey + "' found data: '" +
foundData + "'.");
} else {
Systemout.printin("No record found for key '" + aKey + "".");
}
} catch (Exception e) {
/| Exception handling goes here

}
Deleting Records

You can use the Dat abase. del et e() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key
are deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are
described in Using Cursors (page 47).

You can also delete every record in the database by using Dat abase. truncat e().

For example:
package com sl eepycat . exanpl es. db. GettingStarted,;

i nport com sl eepycat . db. Dat abaseEnt ry;
i nport com sl eepycat . db. Dat abase;

Dat abase nyDat abase = nul | ;
/| Database opens onitted for clarity.
/| Database can NOT be opened read-only.

9/22/2004 Getting Started with DB Page 23

Reading and Writing Database
Records

try {
String aKey = "nyFirstKey";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

[/ Performthe deletion. Al records that use this key are
[/ del eted.
myDat abase. del ete(nul |, theKey);
} catch (Exception e) {
/] Exception handling goes here

}
Data Persistence

When you perform a database modification, your modification is made in the in-memory
cache. This means that your data modifications are not necessarily written to disk, and
so your data may not appear in the database after an application restart.

Note that as a normal part of closing a database, its cache is written to disk. However,
in the event of an application or system failure, there is no guarantee that your databases
will close cleanly. In this event, it is possible for you to lose data. Under extremely rare
circumstances, it is also possible for you to experience database corruption.

Therefore, if you care about whether your data persists across application runs, and to
guard against the rare possibility of database corruption, you should use transactions to
protect your database modifications. Every time you commit a transaction, DB ensures
that the data will not be lost due to application or system failure. For information on
transactions, see the Berkeley DB Programmer’s Tutorial and Reference Guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for
example, you are using DB to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some
guarantee that your database modifications are persistent, then you should periodically
Syncs cause the entire contents of your in-memory cache to be written to disk. As such,
they are quite expensive and you should use them sparingly.

Remember that by default a sync is performed any time a non-transactional database is
closed cleanly. (You can override this behavior by specifying t rue on the call to
Dat abase. cl ose() .) That said, you can manually run a sync by calling Dat abase. sync().

|:| If your application or system crashes and you are not using transactions, then you should
either discard and recreate your databases, or verify them. You can verify a database using
Database.verify(). If your databases do not verify cleanly, use the db_dump command to
salvage as much of the database as is possible. Use either the - Ror -r command line options
to control how aggressive db_dump should be when salvaging your databases.

9/22/2004 Getting Started with DB Page 24

Using the BIND APIs

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte
arrays for storage in a database can be a nontrivial operation. To help you with this
problem, DB provides the Bind APIs. While these APIs are described in detail in the
Sleepycat Java Collections Tutorial (see http://www.sleepycat.com/docs/ref/toc.html),
this section provides a brief introduction to using the Bind APIs with:

« Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Doubl e,
or String.

o Complex objects that implement Java serialization.

Use this if you are storing objects that implement Seri al i zabl e and if you do not want
to sort on this information.

» Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your
own custom tuple bindings. Note that you should use custom tuple bindings even if
your objects are serializeable if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a Dat abaseEnt ry object. That is, you
can store a single field containing one of the following types:

e String

o Character
» Bool ean

« Byte

» Short

o Integer

e Long

« Float

» Double

To store primitive data using the Bind APIs:

1. Create an Ent ryBi ndi ng object.

9/22/2004 Getting Started with DB Page 25

http://www.sleepycat.com/docs/ref/toc.html

Using the BIND APIs

When you do this, you use Tupl eBi ndi ng. get Primiti veBi ndi ng() to return the binding
that you use for the conversion.

2. Use the EntryBindi ng object to place the numerical object on the Dat abaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever
manner you wish. For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

Dat abase nyDat abase = nul | ;
/| Database open onmtted for clarity.

/'l Need a key for the put.
try {
String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/1 Now build the DatabaseEntry using a Tupl eBi nding

Long nyLong = new Long(123456789l);

Dat abaseEntry theData = new Dat abaseEntry();

Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri ni tiveBi ndi ng(Long. cl ass);
nyBi ndi ng. obj ect ToEnt ry(nyLong, theData);

[/ Now store it

nyDat abase. put (nul |, theKey, theData);
} catch (Exception e) {

/1 Exception handling goes here
}

Retrieval from the Dat abaseEnt ry object is performed in much the same way:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . bi nd. Ent ryBi ndi ng;

i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. LockMbde;

i nport com sl eepycat . db. Qperati onSt at us;

9/22/2004 Getting Started with DB Page 26

Using the BIND APIs

Dat abase nyDat abase = nul | ;
/| Database open onmtted for clarity

try {
/] Need a key for the get

String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/] Need a DatabaseEntry to hold the associated data.
Dat abaseEntry theData = new Dat abaseEntry();

[/ Bindings need only be created once for a given scope
Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);

Il Get it
OperationStatus retVal = nyDatabase. get(null, theKey, theData,
LockMvde. DEFAULT) ;
String retkKey = null;
if (retVal == QperationStatus. SUCCESS) {
Il Recreate the data.
Il Use the binding to convert the byte array contained in theData
Il to a Long type.
Long theLong = (Long) nyBinding.entryTohj ect (theData);
retKey = new String(theKey.getData());

Systemout.printin("For key: '" + retKey + "' found Long: '" +
theLong + "'.");
} else {
Systemout.printin("No record found for key "" + retkKey + "'.");
}

} catch (Exception e) {
/] Exception handling goes here
}

Serializeable Complex Objects

Frequently your application requires you to store and manage objects for your record
data and/or keys. You may need to do this if you are caching objects created by another
process. You may also want to do this if you want to store multiple data values on a
record. When used with just primitive data, or with objects containing a single data
member, DB database records effectively represent a single row in a two-column table.
By storing a complex object in the record, you can turn each record into a single row in
an n-column table, where n is the number of data members contained by the stored
object(s).

In order to store objects in a DB database, you must convert them to and from a byte

array. The first instinct for many Java programmers is to do this using Java serialization.
While this is functionally a correct solution, the result is poor performance because this
causes the class information to be stored on every such database record. This information

9/22/2004 Getting Started with DB Page 27

Using the BIND APIs

can be quite large and it is redundant — the class information does not vary for serialized
objects of the same type.

In other words, directly using serialization to place your objects into byte arrays means
that you will be storing a great deal of unnecessary information in your database, which
ultimately leads to larger databases and more expensive disk 1/0.

The easiest way for you to solve this problem is to use the Bind APIs to perform the
serialization for you. Doing so causes the extra object information to be saved off to a
unique Dat abase dedicated for that purpose. This means that you do not have to duplicate
that information on each record in the Dat abase that your application is using to store
it's information.

Note that when you use the Bind APIs to perform serialization, you still receive all the
benefits of serialization. You can still use arbitrarily complex object graphs, and you still
receive built-in class evolution through the serialVersionUID (SUID) scheme. All of the
Java serialization rules apply without modification. For example, you can implement
Externalizable instead of Serializable.

Usage Caveats

Before using the Bind APIs to perform serialization, you may want to consider writing your
own custom tuple bindings. Specifically, avoid serialization if:

« If you need to sort based on the objects your are storing. The sort order is meaningless
for the byte arrays that you obtain through serialization. Consequently, you should
not use serialization for keys if you care about their sort order. You should also not
use serialization for record data if your Dat abase supports duplicate records and you
care about sort order.

* You want to minimize the size of your byte arrays. Even when using the Bind APIs to
perform the serialization the resulting byt e array may be larger than necessary. You
can achieve more compact results by building your own custom tuple binding.

* You want to optimize for speed. In general, custom tuple bindings are faster than
serialization at moving data in and out of byt e arrays.

For information on building your own custom tuple binding, see Custom Tuple
Bindings (page 32).

Serializing Objects
To serialize and store a serializeable complex object using the Bind APIs:

1. Implement the class whose instances that you want to store. Note that this class
must implement j ava. i o. Serial i zabl e.

2. Open (create) your databases. You need two. The first is the database that you use
to store your data. The second is used to store the class information.

9/22/2004 Getting Started with DB Page 28

Using the BIND APIs

Instantiate a class catalog. You do this with

com sl eepycat . bi nd. seri al . Storedd assCat al og, and at that time you must provide

a handle to an open database that is used to store the class information.

Create an entry binding that uses com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

Instantiate an instance of the object that you want to store, and place it in a

Dat abaseEnt ry using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data.

Then you might create a class that looks something like this:

package com sl eepycat . exanpl es. db. GettingStarted;

inport java.io.Serializable;

public class MyData inplements Serializable {

private |ong | ongDat a;
private doubl e doubl eDat a;
private String description;

MData() {
 ongData = 0;
doubl eData = 0. 0;
description = null;

}

public void setlLong(long data) {
| ongDat a = dat a;

}

publ i ¢ voi d setDoubl e(doubl e data) {
doubl eData = dat a;

}

public void setDescription(String data) {
description = data;

}

public long getLong() {
return | ongDat a;
}

publ i ¢ doubl e getDouble() {
return doubl eDat a;

}

public String getDescription() {
return description;

9/22/2004

Getting Started with DB

Page 29

Using the BIND APIs

}

You can then store instances of this class as follows:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i mport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseType;

/1 The key data.
String akey = "nyData";

[/ The data data

MyDat a data2Store = new MyData();

dat a2St or e. set Long(1234567891) ;

dat a2St or e. set Doubl e(1234. 9876543) ;

dat a2St ore. set Description("A test instance of this class");

try {

/1 Qpen the database that you will use to store your data
Dat abaseConfi g nyDbConfig = new Dat abaseConfig();

myDbConfig. set Al | owCreat e(true);

myDbConf i g. set Sort edDupl i cat es(true);

myDbConf i g. set Type(Dat abaseType. BTREE) ;

Dat abase nyDat abase = new Dat abase("nyDb", null, nyDbConfig);

/1 Open the database that you use to store your class infornation.

/1 The db used to store class information does not require duplicates
/'l support.

myDbConfi g. set Sort edDupl i cat es(fal se);

Dat abase myd assDb = new Dat abase("cl assDb", null, myDbConfig);

/I Instantiate the class catal og
St oredCl assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/I Create the binding
Ent ryBi ndi ng dat aBi nding = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/I Create the DatabaseEntry for the key
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

9/22/2004

Getting Started with DB Page 30

Using the BIND APIs

/| Create the DatabaseEntry for the data. Use the EntryBinding object
/] that was just created to popul ate the DatabaseEntry

Dat abaseEntry theData = new Dat abaseEntry();

dat aBi ndi ng. obj ect ToEnt ry(dat a2St ore, theData);

{/ Put it as normal
myDat abase. put (nul |, theKey, theData);

/| Database and environment close omtted for brevity

} catch (Exception e) {

}

/] Exception handling goes here

Deserializing Objects

Once an object is stored in the database, you can retrieve the MyDat a objects from the
retrieved Dat abaseEnt ry using the Bind APIs in much the same way as is described above.
For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. LockMode;

/1 The key data.
String akey = "nyData";

try {

/1 Open the database that stores your data

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();

nmyDbConfi g. set Al | owCreat e(f al se);

nmyDbConf i g. set Type(Dat abaseType. BTREE) ;

Dat abase nyDat abase = new Dat abase("nyDb", null, nyDbConfig);

/1 Qpen the database that stores your class infornation.
Dat abase nyCd assDb = new Dat abase("cl assDb", null, myDbConfig);

/'l Instantiate the class catal og
St oredCl assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/] Create the binding

9/22/2004

Getting Started with DB Page 31

Using the BIND APIs

Ent ryBi ndi ng dat aBi ndi ng = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/I Create DatabaseEntry objects for the key and data
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Do the get as normal
nyDat abase. get (nul |, theKey, theData, LockMbde. DEFAULT);

/] Recreate the MyData object fromthe retrieved DatabaseEntry using
/] the EntryBinding created above
M/Data retrievedData = (M/Data) dataBinding.entryToQbject (theData);

/| Database and environment close omtted for brevity
} catch (Exception e) {
/] Exception handling goes here

}
Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings
to do this. While they are more work to write and maintain than if you were to use
serialization, the byt e array conversion is faster. In addition, custom tuple bindings should
allow you to create byt e arrays that are smaller than those created by serialization.
Custom tuple bindings also allow you to optimize your BTree comparisons, whereas
serialization does not.

For information on using serialization to store complex objects, see Serializeable Complex
Objects (page 27).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not
have to implement serialization.

2. Implement the com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng interface.
3. Open (create) your database. Unlike serialization, you only need one.
4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a
Dat abaseEnt ry using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

package com sl eepycat . exanpl es. db. GettingStarted;

public class MyData2 {
private |ong | ongDat a;

9/22/2004 Getting Started with DB Page 32

Using the BIND APIs

private Doubl e doubl eDat a;
private String description;

public MyData2() {
| ongData = 0;
doubl eData = new Doubl e(0. 0);

description = "";

}

public void setLong(long data) {
| ongDat a = dat a;

}

publ i ¢ voi d setDoubl e(Doubl e data) {
doubl eData = dat a;

}

public void setString(String data) {
description = data;

}

public long getLong() {
return | ongDat a;

}

publ i ¢ Doubl e get Double() {
return doubl eDat a;

}

public String getString() {
return description;
}
}

In this case, you need to write a tuple binding for the MyDat a2 class. When you do this,
you must implement the Tupl eBi ndi ng. obj ect ToEnt ry() and Tupl eBi ndi ng. ent ryToQj ect ()
abstract methods. Remember the following as you implement these methods:

» You use Tupl eBi ndi ng. obj ect ToEntry() to convert objects to byt e arrays. You use
com sl eepycat . bi nd. tupl e. Tupl eQut put to write primitive data types to the byte
array. Note that Tupl eQut put provides methods that allows you to work with numerical
types (I ong, doubl e, i nt, and so forth) and not the corresponding j ava. | ang numerical
classes.

« The order that you write data to the byt e array in Tupl eBi ndi ng. obj ect ToEntry() is
the order that it appears in the array. So given the MyDat a2 class as an example, if
you write descri ption, doubl eDat a, and then | ongDat a, then the resulting byte array
will contain these data elements in that order. This means that your records will sort
based on the value of the descri pti on data member and then the doubl eDat a member,

9/22/2004 Getting Started with DB Page 33

Using the BIND APIs

and so forth. If you prefer to sort based on, say, the | ongDat a data member, write it
to the byte array first.

» You use Tupl eBi ndi ng. ent ryToQhj ect () to convert the byt e array back into an instance
of your original class. You use com sl eepycat . bi nd. t upl e. Tupl el nput to get data from
the byt e array.

« The order that you read data from the byt e array must be exactly the same as the
order in which it was written.

For example:

package com sl eepycat . exanpl es. db. GettingStarted,;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i mport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i mport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class MyTupl eBindi ng extends Tupl eBinding {

[/ Wite a MData2 object to a Tupl eQut put
public voi d object ToEntry(Object object, TupleQutput to) {

M/Dat a2 nyData = (MyDat a2) obj ect;

Il Wite the data to the Tupl eQutput (a DatabaseEntry).

[l Order is inportant. The first data witten will be

Il the first bytes used by the default conparison routines.
to.writeDoubl e(myDat a. get Doubl e() . doubl eVal ue());
to.witeLong(myData. getLong());
to.witeString(nyData.getString());

}

[/ Convert a Tuplelnput to a MyData2 obj ect
public Onject entryToQbject(Tuplelnput ti) {

[/ Data must be read in the sane order that it was
[l originally witten.

Doubl e theDoubl e = new Doubl e(ti.readDoubl e());
long theLong = ti.readLong();

String theString = ti.readString();

M/Dat a2 nyData = new MyDat a2();
myDat a. set Doubl e(t heDoubl e) ;
myDat a. set Long(t heLong) ;

myDat a. set String(theString);

return myDat a;

9/22/2004 Getting Started with DB Page 34

Database Usage Example

In order to use the tuple binding, instantiate the binding and then use:
o MTupl eBi ndi ng. obj ect ToEntry() to convert a MyData2 object to a Dat abaseEntry.
o MTupl eBi ndi ng. entryTohj ect () to convert a Dat abaseEntry to a MyDat a2 object.

For example:
package com sl eepycat . exanpl es. db. GettingStarted;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Dat abaseEnt ry;

Tupl eBi ndi ng keyBi nding = new MyTupl eBi ndi ng();

MyDat a2 theKeyData = new MyData2();

t heKeyDat a. set Long(1234567891) ;

t heKeyDat a. set Doubl e(new Doubl e(12345. 6789)) ;
t heKeyDat a. set String("M/ key data");

Dat abaseEntry nyKey = new Dat abaseEntry();

try {
[/ Store theKeyData in the DatabaseEntry

keyBi ndi ng. obj ect ToEnt ry(t heKeyData, nyKey);
/| Database put and get activity onitted for clarity

/] Retrieve the key data

t heKeyData = (MyDat a2) keyBi ndi ng. ent ryTohj ect (myKey) ;
} catch (Exception e) {

/| Exception handling goes here

}
Database Usage Example

In MyDbs Class (page 16) we created a class that opens and closes databases for us. We
now make use of that class to load inventory data into two databases that we will use for
our inventory system.

Again, remember that you can find the complete implementation for these functions in:

DB I NSTALL/ exanpl es_j aval src/ cont sl eepycat/ exanpl es/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

9/22/2004 Getting Started with DB Page 35

Database Usage Example

Note that in this example, we are going to save two types of information. First there are
a series of inventory records that identify information about some food items (fruits,
vegetables, and desserts). These records identify particulars about each item such as the
vendor that the item can be obtained from, how much the vendor has in stock, the price
per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and
phone number, the sales representative’s name and his phone number, and so forth.

Example 3.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because
this class is not serializable, we need a custom tuple binding in order to place it on a
Dat abaseEnt ry object. Because the Tupl el nput and Tupl eQut put classes used by custom
tuple bindings support Java numerical types and not Java numerical classes, we use i nt
and fl oat here instead of the corresponding | nt eger and Fl oat classes.

/I File Inventory.java
package com sl eepycat . exanpl es. db. GettingStarted,;

public class Inventory {

private String sku;

private String itenmNang;
private String category;
private String vendor;
private int vendorlnventory;
private float vendorPrice;

public void setSku(String data) {
sku = dat a;

}

public void setltemNane(String data) {
itemName = data;
}

public void setCategory(String data) {
category = data;

}

publ i c voi d setVendorlnventory(int data) {
vendor | nventory = dat a;

}

publ i c void setVendor(String data) {
vendor = data;

}

9/22/2004 Getting Started with DB Page 36

Database Usage Example

public void setVendorPrice(float data) {
vendor Price = data;

public String getSku() { return sku; }

public String getltenName() { return itenNane; }

public String getCategory() { return category; }

public int getVendorlnventory() { return vendorlnventory; }
public String getVendor() { return vendor; }

public float getVendorPrice() { return vendorPrice; }

}

Example 3.2. Vendor.java

The data for vendor records are stored in instances of the following class. Notice that we
are using serialization with this class for no other reason than to demonstrate serializing

a class instance.

/1 File Vendor.java
package com sl eepycat . exanpl es. db. GettingStarted;

inport java.io.Serializable;

public class Vendor inplements Serializable {

private String
private String
private String
private String
private String
private String
private String
private String

r epNane;

addr ess;

city;

state;

zi pcode;

bi zPhoneNunber ;
r epPhoneNunber ;
vendor ;

publ i c void setRepNane(String data) {
repNane = dat a;

}

public void setAddress(String data) {
address = data;

}

public void setCity(String data) {
city = data;

}

public void setState(String data) {
state = data;

9/22/2004

Getting Started with DB

Page 37

Database Usage Example

}

publ i c void setZipcode(String data) {
zi pcode = dat a;

}

publ i c voi d set Busi nessPhoneNunber (String data) {
bi zPhoneNurber = dat a;

}

publ i ¢ voi d set RepPhoneNunber (String data) {
repPhoneNunber = dat a;

}

public void setVendorName(String data) {
vendor = data;

}

/] Corresponding getter methods omtted for brevity.

/] See exanpl es/ cont sl eepycat/exanpl es/je/ gettingStarted/
/1 exanpl es/ Vendor . j ava

/] for a conplete inplenmentation of this class.

}

Because we will not be using serialization to convert our | nvent ory objects to a
Dat abaseEnt ry object, we need a custom tuple binding:

Example 3.3. InventoryBinding.java

/1 File InventoryBinding.java
package com sl eepycat . exanpl es. db. GettingStart ed,;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class InventoryBinding extends TupleBinding {

[/ Inplement this abstract method. Used to convert
/] a DatabaseEntry to an Inventory object.
public (bject entryToQhject(Tuplelnput ti) {

String sku = ti.readString();
String itemName = ti.readString();
String category = ti.readString();
String vendor = ti.readString();
int vendorlnventory = ti.readlnt();

9/22/2004 Getting Started with DB Page 38

Database Usage Example

float vendorPrice = ti.readFloat();

Inventory inventory = new Inventory();

i nventory. set Sku(sku);
inventory.setltenmName(itenNane);

i nvent ory. set Cat egory(cat egory);

i nvent ory. set Vendor (vendor) ;

i nvent ory. set Vendor I nvent ory(vendor I nventory);
i nventory. set Vendor Pri ce(vendorPrice);

return inventory;

}

/1 Inplement this abstract method. Used to convert a
/] Inventory object to a DatabaseEntry object.
publ i ¢ voi d object ToEntry(Cbj ect object, TupleQutput to) {

Inventory inventory = (Inventory)object;

to.witeString(inventory.getSku());
to.witeString(inventory.getltemane())
to.witeString(inventory.getCategory())
to.witeString(inventory.getVendor());
to.witelnt(inventory.getVendorlnventory());
to.witeFl oat (inventory.getVendorPrice());

}

In order to store the data identified above, we write the Exanpl eDat abaseLoad application.
This application loads the inventory and vendor databases for you.

Inventory information is stored in a Dat abase dedicated for that purpose. The key for
each such record is a product SKU. The inventory data stored in this database are objects
of the I nventory class (see Inventory.java (page 36) for more information).

Exanpl eDat abaseLoad loads the inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.
2. Usesjava.lang. String to create a key based on the item's SKU.

3. Uses an lnventory class instance for the record data. This object is stored on a
Dat abaseEnt ry object using | nvent or yBi ndi ng, a custom tuple binding that we
implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Dat abase dedicated for that purpose. The vendor
data stored in this database are objects of the Vendor class (see Vendor.java (page 37)
for more information). To load this Dat abase, Exanpl eDat abaseLoad does the following:

9/22/2004 Getting Started with DB Page 39

Database Usage Example

1. Reads the vendor data from a flat text file prepared in advance for this purpose.
2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a
Dat abaseEnt ry object using com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

Example 3.4. Stored Class Catalog Management with MyDbs

Before we can write Exanpl eDat abaseLoad, we need to update MyDbs. j ava to support the
class catalogs that we need for this application.

To do this, we start by importing an additional class to support stored class catalogs:

/] File: MyDbs.java
package com sl eepycat . exanpl es. db. GettingStarted,;

i mport com sl eepycat . bi nd. seri al . St oredC assCat al og;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

i nport java.io.FileNot FoundExcepti on;

We also need to add two additional private data members to this class. One supports the
database used for the class catalog, and the other is used as a handle for the class catalog
itself.

public class MDbs {

/] The databases that our application uses
private Database vendorDb = nul | ;

private Database inventoryDb = null;
private Database classCatal ogbb = nul | ;

/] Needed for object serialization
private StoredC assCatal og cl assCat al og;

private String vendordb = "VendorDB. db";
private String inventorydb = "InventoryDB. db";
private String classcatal ogdb = "C assCat al ogDB. db";

[/ Qur constructor does nothing
public MyDbs() {}

Next we need to update the MyDbs. set up() method to open the class catalog database
and create the class catalog.

9/22/2004 Getting Started with DB Page 40

Database Usage Example

/] The setup() nethod opens all our databases

[/ for us.

public void setup(String databasesHone)
throws Dat abaseException {

Dat abaseConfi g myDbConfig = new DatabaseConfig();

/| Database configuration omtted for brevity

Il Now open, or create and open, our databases
Il Open the vendors and inventory databases

try {
vendordb = databasesHone + "/" + vendor db;
vendor Db = new Dat abase(vendor db,
nul I,
myDbConfi g) ;

i nvent orydb
i nvent oryDb

dat abasesHone + "/" + inventorydb;
new Dat abase(i nvent orydb,

null,

myDbConfi g) ;

/1 Open the class catalog db. This is used to
/1 optimze class serialization.
cl asscat al ogdb = dat abasesHome + "/" + cl asscat al ogdb;
cl assCat al ogDb = new Dat abase(cl asscat al ogdb,
null,
myDbConfi g) ;

} catch(FileNot FoundException fnfe) {
Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

}

Finally we need a getter method to return the class catalog. Note that we do not provide
a getter for the catalog database itself - our application has no need for that.

We also update our cl ose() to close our class catalog.

Il getter nethods
publ i ¢ Database get VendorDB() {
return vendor Db;

}

publ i ¢ Database getlnventoryDB() {
return inventoryDb;
}

9/22/2004 Getting Started with DB Page 41

Database Usage Example

publ i c StoredC assCatal og get Cl assCatal og() {
return classCatal og;
}

Finally, we need our cl ose() method:

/I dose the databases
public void close() {

try {
if (vendorDb !'= null) {

vendor Db. cl ose();
}

if (inventoryDb !'= null) {
i nvent oryDb. cl ose();
1

if (classCatalogDb !'= null) {
cl assCat al ogDb. cl ose();
1

} catch(DatabaseException dbe) {

Systemerr.println("Error closing MDbs:

dbe. toString()):
Systemexit(-1);

So far we have identified the data that we want to store in our databases and how we
will convert that data in and out of Dat abaseEnt ry objects for database storage. We have
also updated MyDbs to manage our databases for us. Now we write Exanpl eDat abaselLoad
to actually put the inventory and vendor data into their respective databases. Because
of the work that we have done so far, this application is actually fairly simple to write.

Example 3.5. ExampleDatabaselLoad.java

First we need the usual series of import statements:

/'l File: Exanpl eDatabaselLoad.ava

package com sl eepycat . exanpl es. db. GettingStarted;

i nport java.io.BufferedReader;

inport java.io.File;

inport java.io.FilelnputStream

i nport java.io.FileNot FoundExcepti on;
i nport java.io.lOException;

i nport java.io.lnputStreanReader;

9/22/2004

Getting Started with DB

Page 42

Database Usage Example

inport java.util.ArraylList;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

Next comes the class declaration and the private data members that we need for this
class. Most of these are setting up default values for the program.

Note that two Dat abaseEnt ry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a MyDbEnv object is instantiated here.
We can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbs (page 40) for its implementation details.

Finally, the i nventory. txt and vendors. txt file can be found in the GettingStarted
examples directory along with the classes described in this extended example.

public class Exanpl eDat abaseLoad {

private static String nyDbsPath ="./";
private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

/| DatabaseEntries used for |oading records
private static DatabaseEntry theKey = new DatabaseEntry();
private static DatabaseEntry theData = new DatabaseEntry();

/'l Encapsul ates the databases.
private static MyDbs nyDbs = new MyDbs();

Next comes the usage() and nai n() methods. Notice the exception handling in the mai n()
method. This is the only place in the application where we catch exceptions. For this
reason, we must catch Dat abaseExcepti on which is thrown by the com sl eepycat . db. *
classes.

Also notice the call to MyDbs. cl ose() in the final |y block. This is the only place in the
application where MyDbs. cl ose() is called. MyDbs. cl ose() is responsible for closing all
open Dat abase handles for you.

private static void usage() {
System out . printl n("Exanpl eDat abaseLoad [-h <database hone>]");
System out. println(" [-s <selections file>] [-v <vendors file>]");
Systemexit(-1);

}

public static void main(String args[]) {
Exanpl eDat abaseLoad edl = new Exanpl eDat abaselLoad();

try {

9/22/2004 Getting Started with DB Page 43

Database Usage Example

edl . run(args);
} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abaseLoad: " + dbe.toString());
dbe. print StackTrace();
} catch (Exception e) {
Systemout. println("Exception: " + e.toString());
e.print StackTrace();

} finally {
myDbs. cl ose();
}

Systemout.printin("Al done.");
}

Next we write the Exanpl eDat abaselLoad. run() method. This method is responsible for
initializing all objects. Because our environment and databases are all opened using the
MyDbs. set up() method, Exanpl eDat abaseLoad. r un() method is only responsible for calling
MyDbs. set up() and then calling the Exanpl eDat abaseLoad methods that actually load the
databases.

private void run(String args[]) throws DatabaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbs. set up(myDbsPath); // path to the environnent honme

Systemout. println("loading vendors db.");

| oadVendor sDb() ;

Systemout. println("loading inventory db.");
| oadl nvent oryDb();

}

This next method loads the vendor database. This method uses serialization to convert
the Vendor object to a Dat abaseEntry object.

private void | oadVendorsDb()
throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

[/ and loads it into a list for us to work with. The integer
Il parameter represents the number of fields expected in the
Il file.

ArrayList vendors = | oadFile(vendorsFile, 8);

/1l Now |oad the data into the database. The vendor's nanme is the
Il key, and the data is a Vendor class object.

Il Need a serial binding for the data
Ent ryBi ndi ng dat aBi ndi ng =
new Seri al Bi ndi ng(myDbs. get O assCatal og(), Vendor.class);

9/22/2004 Getting Started with DB Page 44

Database Usage Example

}

for (int i =0; i <vendors.size(); i+t {
String[] sArray = (String[])vendors.get(i);
Vendor theVendor = new Vendor ();
t heVendor . set Vendor Name(sArray[0]);
t heVendor . set Addr ess(sArray[1]);
theVendor.setGity(sArray[2]);
t heVendor . set State(sArray[3]);
t heVendor . set Zi pcode(sArray[4]);
t heVendor . set Busi nessPhoneNunber (sArray[5]);
t heVendor . set RepNane(sArray[6]) ;
t heVendor . set RepPhoneNunber (sArray[7]);

/1 The key is the vendor's nane.
/1 ASSUMES THE VENDOR S NAME | S UNI QUE!
String vendor Name = t heVendor. get Vendor Name() ;
try {
t heKey = new Dat abaseEntry(vendor Nane. get Byt es("UTF-8"));
} catch (1 OException willNeverQCeccur) {}

/1 Convert the Vendor object to a DatabaseEntry object
/1 using our SerialBinding
dat aBi ndi ng. obj ect ToEnt ry(t heVendor, theData);

[/ Put it in the database.
myDbs. get Vendor DB() . put (nul I, theKey, theData);

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 38)) to convert the | nvent ory object to a Dat abaseEntry

object.

private void | oadl nventoryDb()

throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the
Il file.

ArrayList inventoryArray = |oadFile(inventoryFile, 6);

I/ Now | oad the data into the database. The itenmls sku is the
Il key, and the data is an Inventory class object.

Il Need a tuple binding for the Inventory class.
Tupl eBi ndi ng i nvent or yBi ndi ng = new | nvent or yBi ndi ng();

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);

9/22/2004

Getting Started with DB Page 45

Database Usage Example

String sku = sArray[1];
try {

t heKey = new Dat abaseEntry(sku. get Byt es("UTF-8"));
} catch (1 OException willNeverCeccur) {}

Inventory thelnventory = new Inventory();

thel nventory. set|temNane(sArray[0]);

t hel nvent ory. set Sku(sArray[1]);

Fl oat price = new Float(sArray[2]);

t hel nvent ory. set Vendor Pri ce(price. fl oatVal ue());
Integer vinventory = new Integer(sArray[3]);

t hel nvent ory. set Vendor | nvent ory(vl nventory.intVal ue());
t hel nvent ory. set Cat egory(sArray[4]);

t hel nvent ory. set Vendor (sArray[5]);

/1 Place the Vendor object on the DatabaseEntry object using
/1 our the tuple binding we inplemented in

/'l I'nventoryBindi ng. j ava

i nvent oryBi ndi ng. obj ect ToEntry(thel nventory, theData);

[/ Put it in the database. Note that this causes our
/'l secondary database to be automatically updated for us.
myDbs. get I nvent oryDB() . put (nul |, theKey, theData);

}

The remainder of this application provides utility methods to read a flat text file into an
array of strings and parse the command line options:

private static void parseArgs(String args[]) {
/1 Inplementation onitted for brevity.

}

private ArraylList loadFile(File theFile, int nunFields) {
ArrayList records = new ArrayList();
/1 Inplementation onitted for brevity.
return records;

}

protected Exanpl eDat abaseLoad() {}
}

From the perspective of this document, these things are relatively uninteresting. You can
see how they are implemented by looking at Exanpl eDat abaselLoad. j ava in:

DB I NSTALL/ exanpl es_j aval src/ cont sl eepycat / exanpl es/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

9/22/2004 Getting Started with DB Page 46

Chapter 4. Using Cursors

Cursors provide a mechanism by which you can iterate over the records in a database.
Using cursors, you can get, put, and delete database records. If a database allows duplicate
records, then cursors are the easiest way that you can access anything other than the
first record for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them
to modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Dat abase. openCur sor () method. When you
open a cursor, you can optionally pass it a Cur sor Confi g object to set cursor properties.

For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Cursor Confi g;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport java.io.FileNot FoundExcepti on;

Dat abase nyDat abase = nul | ;
Cursor nyCursor = null;

try {
nyDat abase = new Dat abase("nyDB", null, null);

myCur sor = nyDat abase. openCursor(null, null);
} catch (FileNot FoundException fnfe) {

/] Exception handling goes here ...
} catch (DatabaseException dbe) {

/I Exception handling goes here ...
}

To close the cursor, call the Cursor. cl ose() method. Note that if you close a database
that has cursors open in it, then it will complain and close any open cursors for you. For
best results, close your cursors from within a final | y block.

package com sl eepycat . exanpl es. db. GettingStart ed;

i nport com sl eepycat . db. Cursor;
i nport com sl eepycat . db. Dat abase;

9/22/2004 Getting Started with DB Page 47

Getting Records Using the Cursor

try {

} cai;:lh o]

} finally {
try {

if (myCursor !'=null) {
myCur sor . cl ose();

}

if (nyDatabase != null) {
nyDat abase. cl ose() ;

}

} catch(DatabaseException dbe) {
Systemerr.printin("Error in close: " + dbe.toString());

}
}

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor
and then use the Cursor. get Next () method. For example:

package com sl eepycat . exanpl es. db. GettingStarted,;

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.

Cursor cursor = null;
try {

db
db
db
db
db
db

Dat abase myDat abase
/| Database open onitted for brevity

/1 Open the cursor.
cursor = nyDat abase. openCursor (null, null);

. Dat abase;

. Dat abaseEntry;

. Dat abaseExcept i on;
. Cursor;

. LockMode;

. QperationSt at us;

= null;

/] Cursors need a pair of DatabaseEntry objects to operate. These hold
/1 the key and data found at any given position in the database.

Dat abaseEntry foundKey = new Dat abaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

9/22/2004

Getting Started with DB Page 48

Getting Records Using the Cursor

/] To iterate, just call getNext() until the |ast database record has been
/] read. Al cursor operations return an OperationStatus, so just read

[/ until we no |onger see QperationStatus. SUCCESS

whil e (cursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==

Oper at i onSt at us. SUCCESS) {
Il getData() on the DatabaseEntry objects returns the byte array
Il held by that object. W use this to get a String value. If the
/| DatabaseEntry held a byte array representation of some other data
Il type (such as a conpl ex object) then this operation would | ook
Il considerably different.
String keyString = new String(foundKey.getData());
String dataString = new String(foundData.getData());
Systemout.printin("Key | Data : " + keyString +" | " +
dataString + "");

}
} catch (DatabaseException de) {
Systemerr.printIn("Error accessing database." + de);

} finally {

I

Cursors must be cl osed.

cursor.close();

}

To iterate over the database from the last record to the first, instantiate the cursor, and
then use Cursor. get Prev() until you read the first record in the database. For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport
i nport
i nport
i nport
i nport
i nport

Cur sor

com sl eepycat . db. Cursor;

com sl eepycat . db. Dat abase;

com sl eepycat . db. Dat abaseEnt ry;
com sl eepycat . db. Dat abaseExcepti on;
com sl eepycat . db. LockMode;

com sl eepycat . db. Oper ati onSt at us;

cursor = null;

Dat abase nyDat abase = nul | ;

try {

I

Dat abase open onitted for brevity

/] Qpen the cursor.
cursor = nyDat abase. openCursor(null, null);

/] Get the DatabaseEntry objects that the cursor will use.
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

9/22/2004

Getting Started with DB Page 49

Getting Records Using the Cursor

Il lterate fromthe last record to the first in the database
whil e (cursor.getPrev(foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

String theKey = new String(foundKey. getData());
String theData = new String(foundData.getData());
Systemout.printin("Key | Data : " + theKey + " | " + theData + "");

}
} catch (DatabaseException de) {

Systemerr.printIn("Error accessing database." + de);

} finally {

}

/1 Cursors nust be closed.
cursor.close();

Searching for Records

You can use cursors to search for database records. You can search based on just a key,
or you can search based on both the key and the data. You can also perform partial
matches if your database supports sorted duplicate sets. In all cases, the key and data
parameters of these methods are filled with the key and data values of the database
record to which the cursor is positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and Oper at i onSt at us. NOTFOUND
is returned.

The following Cur sor methods allow you to perform database searches:

Cur sor . get Sear chKey()
Moves the cursor to the first record in the database with the specified key.
Cur sor . get Sear chKeyRange()

Identical to unless you are using the BTree access. In this case, the cursor moves to
the first record in the database whose key is greater than or equal to the specified
key. This comparison is determined by the comparator that you provide for the
database. If no comparator is provided, then the default lexicographical sorting is
used.

For example, suppose you have database records that use the following Strings as
keys:

Al abama
Al aska
Arizona

Then providing a search key of Al aska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Al abama), providing a search

9/22/2004

Getting Started with DB Page 50

Getting Records Using the Cursor

key of Al as moves the cursor to the second key (Al aska), and providing a key of Ar
moves the cursor to the last key (Ari zona).

Cursor. get Sear chBot h()

Moves the cursor to the first record in the database that uses the specified key and
data.

Cur sor . get Sear chBot hRange()

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. If the database supports duplicate records, then on matching
the key, the cursor is moved to the duplicate record with the smallest data that is
greater than or equal to the specified data.

For example, suppose your database uses BTree and it has database records that use
the following key/data pairs:

Al abama/ At hens

Al abama/ Fl orence
Al askal/ Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

then providing:

a search key of ... and a search data of ... moves the cursor to ...
Al Fl Alabama/Florence
Ar Fl Arizona/Florence
Al Fa Alaska/Fairbanks
Al A Alabama/Athens

For example, assuming a database containing sorted duplicate records of U.S. States/U.S
Cities key/data pairs (both as Strings), then the following code fragment can be used to
position the cursor to any record in the database and print its key/data values:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Cperati onSt at us;

9/22/2004

Getting Started with DB Page 51

Getting Records Using the Cursor

[l For this exanple, hard code the search key and data
String searchKey = "Al";

String searchData = "Fa";

Cursor cursor = null;
Dat abase nyDat abase = nul | ;

try {

/| Database open onmtted for brevity

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

Dat abaseEntry theKey =

new Dat abaseEnt ry(sear chKey. get Byt es("UTF-8"));
Dat abaseEntry theData =

new Dat abaseEnt ry(searchDat a. get Byt es(" UTF-8"));

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

/| Performthe search
OperationStatus retVal = cursor. get Sear chBot hRange(t heKey, theData,
LockMde. DEFAULT) ;
[/ NOTFOUND is returned if a record cannot be found whose key begins
[/ with the search key AND whose data begins with the search data.
if (retVal == QperationStatus. NOTFOUND) {
Systemout. println(searchKey + "/" + searchData +
" not matched in database " +
myDat abase. get Dat abaseNange()) ;
} else {
Il Upon conpleting a search, the key and data DatabaseEntry
Il paranmeters for getSearchBot hRange() are populated with the
Il key/data val ues of the found record.
String foundKey = new String(theKey.getData());
String foundData = new String(theData.getData());
Systemout. println("Found record " + foundkey + "/" + foundData +
“for search key/data: " + searchKey +
"/" + searchData);

}

} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

9/22/2004 Getting Started with DB Page 52

Getting Records Using the Cursor

Working with Duplicate Records

A record is a duplicate of another record if the two records share the same key. For
duplicate records, only the data portion of the record is unique.

Duplicate records are supported only for the BTree or Hash access methods. For information
on configuring your database to use duplicate records, see Allowing Duplicate
Records (page 90).

If your database supports duplicate records, then it can potentially contain multiple
records that share the same key. By default, normal database get operations will only
return the first such record in a set of duplicate records. Typically, subsequent duplicate
records are accessed using a cursor. The following Cur sor methods are interesting when
working with databases that support duplicate records:

e Cursor.getNext(), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate
of the current record. For an example of using these methods, see Getting Records
Using the Cursor (page 48).

o Cursor. get Sear chBot hRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 50) for more information.

e Cursor. get Next NoDup(), Cursor. get PrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip
over all the duplicates in a set of duplicate records. If you call Cur sor. get PrevNoDup(),
then the cursor is positioned to the last record for the previous key in the database.
For example, if you have the following records in your database:

Al abama/ At hens

Al abama/ Fl orence
Al askal/ Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

and your cursor is positioned to Al aska/ Fai r banks, and you then call

Cur sor . get PrevNoDup() , then the cursor is positioned to Alabama/Florence. Similarly,
if you call Cursor. get Next NoDup(), then the cursor is positioned to the first record
corresponding to the next key in the database.

If there is no next/previous key in the database, then Operati onSt at us. NOTFOUND is
returned, and the cursor is left unchanged.

« Gets the next record that shares the current key. If the cursor is positioned at the last
record in the duplicate set and you call Cur sor. get Next Dup() , then
Oper ati onSt at us. NOTFOUND is returned and the cursor is left unchanged. Likewise, if

9/22/2004 Getting Started with DB Page 53

Getting Records Using the Cursor

you call get PrevDup() and the cursor is positioned at the first record in the duplicate
set, then Operati onSt at us. NOTFOUND is returned and the cursor is left unchanged.

e Cursor.count ()
Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and displays it and
all its duplicates. Note that the following code fragment assumes that the database
contains only String objects for the keys and data.

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Qperati onSt at us;

Cursor cursor = null;
Dat abase nyDat abase = nul | ;

try {

/| Database open onitted for brevity

/] Create DatabaseEntry objects

/'l searchKey is sone String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor

/1 Ignoring the return value for clarity

OperationStatus retVal = cursor. get Sear chKey(theKey, theDat a,
LockMode. DEFAULT) ;

/1 Count the nunber of duplicates. If the count is greater than 1,

[l print the duplicates.

if (cursor.count() > 1) {

while (retVal == QperationStatus. SUCCESS) {
String keyString = new String(theKey.getData());
String dataString = new String(theData. getData()
Systemout.printIn("Key | Data : " + keyString
dataString + "");

)
+ " "+

9/22/2004 Getting Started with DB Page 54

Putting Records Using Cursors

retVal = cursor.get Next Dup(theKey, theData, LockMde. DEFAULT);

}
}

} catch (Exception e) {

/] Exception handling goes here

} finally {

/1 NMake sure to close the cursor
cursor.close();

Putting Records Using Cursors

You can use cursors to put records into the database. DB's behavior when putting records
into the database differs depending on the flags that you use when writing the record,
on the access method that you are using, and on whether your database supports sorted
duplicates.

Note that when putting records to the database using a cursor, the cursor is positioned
at the record you inserted. Also, you can not transactionally protect a put that is performed
using a cursor; if you want to transactionall protect your database writes, put recrods
using the database handle directly.

Cur sor . put NoDupDat a()

If the provided key already exists in the database, then this method returns
Oper ati onSt at us. KEYEXI ST.

If the key does not exist, then the order that the record is put into the database is
determined by the insertion order in use by the database. If a comparison function
has been provided to the database, the record is inserted in its sorted location.
Otherwise (assuming BTree), lexicographical sorting is used, with shorter items collating
before longer items.

This flag can only be used for the BTree and Hash access methods, and only if the
database has been configured to support sorted duplicate data items (DB_DUPSORT was
specified at database creation time).

This flag cannot be used with the Queue or Recno access methods.

For more information on duplicate records, see Allowing Duplicate Records (page 90).
Cursor. put NoOverwrite()

If the provided key already exists in the database, then this method returns .

If the key does not exist, then the order that the record is put into the database is
determined by the BTree (key) comparator in use by the database.

Cursor. put KeyFi rst()

9/22/2004

Getting Started with DB Page 55

Putting Records Using Cursors

For databases that do not support duplicates, this method behaves exactly the same
as if a default insertion was performed. If the database supports duplicate records,
and a duplicate sort function has been specified, the inserted data item is added in
its sorted location. If the key already exists in the database and no duplicate sort
function has been specified, the inserted data item is added as the first of the data
items for that key.

o Cursor. put KeylLast ()

Behaves exactly as if Cursor. put KeyFirst () was used, except that if the key already
exists in the database and no duplicate sort function has been specified, the inserted
data item is added as the last of the data items for that key.

For example:

package com sl eepycat . exanpl es. db. GettingStarted,;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Cperati onSt at us;

/I Create the data to put into the database
String keylstr = "M first string";

String datalstr = "M first data";

String key2str = "My second string";

String data2str = "My second data";

String data3str ="M third data";

Cursor cursor = null;
Dat abase myDat abase = nul | ;
try {

/| Database open onitted for brevity

Dat abaseEntry keyl = new Dat abaseEntry(keylstr. getBytes("UTF-8"));
Dat abaseEntry datal = new DatabaseEntry(datalstr.getBytes("UTF-8"));
Dat abaseEntry key2 = new Dat abaseEnt ry(key2str. getBytes("UTF-8"));
Dat abaseEntry data2 = new Dat abaseEntry(data2str. get Bytes("UTF-8"));
Dat abaseEntry data3 = new Dat abaseEntry(data3str. get Bytes("UTF-8"));

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/1 Assuming an enpty dat abase.

OperationStatus retVal = cursor. put (keyl, datal); // SUCCESS

9/22/2004 Getting Started with DB Page 56

Deleting Records Using Cursors

ret Val
ret Val

cursor. put (key2, data2); // SUCCESS
cursor. put (key2, data3); // SUCCESS if dups allowed,

/] KEYEXI ST if not.

} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

}

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want
to delete and then call

For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i mport
i mport
i mport
i mport
i mport

Cursor cursor = null;

com sl eepycat .
com sl eepycat .
. db. Dat abaseEnt ry;
com sl eepycat .
com sl eepycat .

com sl eepycat

db. Cur sor;
db. Dat abase;

db. LockMode;
db. Oper ati onSt at us;

Dat abase nyDat abase = nul | ;

try {

/| Database open onitted for brevity

/] Create DatabaseEntry objects

/] searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor. Ignoring the return value for clarity
OperationStatus retVal = cursor. get SearchKey(theKey, theData,

LockMbde. DEFAULT) ;

/1 Count the nunber of records using the given key. If there is only
/| one, delete that record.
if (cursor.count() == 1) {

9/22/2004

Getting Started with DB Page 57

Replacing Records Using Cursors

Systemout.printIn("Deleting " +
new String(theKey.getData()) + "|" +
new String(theData.getData()));

cursor.del ete();
}
} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

}
Replacing Records Using Cursors

You replace the data for a database record by using Cursor. put Current ().

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Gperati onSt at us;

Cursor cursor = null;
Dat abase nyDat abase = nul | ;
try {

/| Database open onitted for brevity

/I Create DatabaseEntry objects

/| searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEnt ry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/] Position the cursor. lgnoring the return value for clarity
OperationStatus retVal = cursor. get Sear chKey(theKey, theData,
LockMbde. DEFAULT);

/1 Repl acenent data
String replaceStr = "M repl acenent string";
Dat abaseEntry repl acenentData =
new Dat abaseEntry(repl aceStr. get Bytes("UTF-8"));
cursor. put Current (repl acement Dat a) ;
} catch (Exception e) {
/| Exception handling goes here

} finally {

9/22/2004 Getting Started with DB Page 58

Cursor Example

/1l NMake sure to close the cursor
cursor.close();

}

Note that you cannot change a record's key using this method; the key parameter is always
ignored when you replace a record.

When replacing the data portion of a record, if you are replacing a record that is a member
of a sorted duplicates set, then the replacement will be successful only if the new record
sorts identically to the old record. This means that if you are replacing a record that is
a member of a sorted duplicates set, and if you are using the default lexicographic sort,
then the replacement will fail due to violating the sort order. However, if you provide a
custom sort routine that, for example, sorts based on just a few bytes out of the data
item, then potentially you can perform a direct replacement and still not violate the
restrictions described here.

Under these circumstances, if you want to replace the data contained by a duplicate
record, and you are not using a custom sort routine, then delete the record and create
a new record with the desired key and data.

Cursor Example

In Database Usage Example (page 35) we wrote an application that loaded two Dat abase
objects with vendor and inventory information. In this example, we will use those
databases to display all of the items in the inventory database. As a part of showing any
given inventory item, we will look up the vendor who can provide the item and show the
vendor's contact information.

To do this, we create the Exanpl eDat abaseRead application. This application reads and
displays all inventory records by:

1. Opening the inventory, vendor, and class catalog Dat abase objects. We do this using
the MyDbs class. See Stored Class Catalog Management with MyDbs (page 40) for a
description of this class.

2. Obtaining a cursor from the inventory Dat abase.
3. Steps through the Dat abase, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 38) is used.

5. Database. get () is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the Dat abaseEntry returned by the get () to a
Vendor object.

7. The contents of the Vendor object are displayed.

9/22/2004 Getting Started with DB Page 59

Cursor Example

We implemented the Vendor class in Vendor.java (page 37). We implemented the | nvent ory
class in Inventory.java (page 36).

The full implementation of Exanpl eDat abaseRead can be found in:

DB I NSTALL/ exanpl es_j aval src/ con sl eepycat / exanpl es/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

Example 4.1. ExampleDatabaseRead.java

To begin, we import the necessary classes:

/1 file Exanpl eDat abaseRead. j ava
package com sl eepycat . exanpl es. db. GettingStarted;

inport java.io.File;
i nport java.io.lOException;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Cursor;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Cperati onSt at us;

Next we declare our class and set up some global variables. Note a MyDbs object is
instantiated here. We can do this because its constructor never throws an exception. See
Database Example (page 16) for its implementation details.

public class Exanpl eDat abaseRead {
private static String nyDbsPath ="./";

/'l Encapsul ates the database environment and dat abases.
private static MyDbs nyDbs = new MyDbs();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBinding;

Next we create the Exanpl eDat abaseRead. usage() and Exanpl eDat abaseRead. mai n()
methods. We perform almost all of our exception handling from

Exanpl eDat abaseRead. mai n() , and so we must catch Dat abaseExcept i on because the
com sl eepycat . db. * APIs throw them.

private static void usage() {
System out. printl n("Exanpl eDat abaseRead [-h <env directory>]" +
"[-s <itemto locate>]");
Systemexit(-1);

9/22/2004 Getting Started with DB Page 60

Cursor Example

}

public static void main(String args[]) {
Exanpl eDat abaseRead edr = new Exanpl eDat abaseRead() ;

try {
edr.run(args);

} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abaseRead: " + dbe.toString());
dbe. print StackTrace();

} finally {
myDbs. cl ose();
}

Systemout.printin("Al done.");
}

In Exanpl eDat abaseRead. run(), we call MyDbs. set up() to open our databases. Then we
create the bindings that we need for using our data objects with Dat abaseEnt ry objects.

private void run(String args[])
t hrows Dat abaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbs. set up(myDbsPat h) ;

Il Setup our bindings.
i nvent oryBi ndi ng = new | nventoryBi ndi ng();
vendor Bi ndi ng =
new Seri al Bi ndi ng(myDbs. get O assCat al og(),
Vendor . cl ass) ;

showAl | I nventory();
}

Now we write the loop that displays the | nvent ory records. We do this by opening a cursor
on the inventory database and iterating over all its contents, displaying each as we go.

private void showAl | I nventory()
t hrows Dat abaseException {
[l Get a cursor
Cursor cursor = nyDbs. getlnventoryDB().openCursor(null, null);

/| DatabaseEntry objects used for reading records
Dat abaseEntry foundKey = new Dat abaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

try { // always want to make sure the cursor gets closed
whil e (cursor.get Next (foundKey, foundDat a,
LockMbde. DEFAULT) == Cperati onSt at us. SUCCESS) {
Inventory thelnventory =

9/22/2004 Getting Started with DB Page 61

Cursor Example

(I'nventory)inventoryBi ndi ng. entryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);

} catch (Exception e) {
Systemerr.printIn("Error on inventory cursor:");
Systemerr.printin(e.toString());
e.print StackTrace()

} finally {
cursor. close();
}

}

We use Exanpl eDat abaseRead. di spl ayl nvent or yRecord() to actually show the record.
This method first displays all the relevant information from the retrieved Inventory object.
It then uses the vendor database to retrieve and display the vendor. Because the vendor
database is keyed by vendor name, and because each inventory object contains this key,
it is trivial to retrieve the appropriate vendor record.

private void displaylnventoryRecord(Dat abaseEntry theKey,
I nventory thel nventory)
throws Dat abaseException {

String theSKU = new String(theKey.getData());
Systemout.printin(theSKU + ":");
Systemout.printin("\t " + thelnventory.getltenmNanme())
Systemout.printin("\t " + thelnventory.getCategory())
Systemout.printin("\t " + thelnventory.getVendor());
Systemout.printin("\t\tNunber in stock: " +

t hel nvent ory. get Vendor | nvent ory());
Systemout.printin("\t\tPrice per unit: " +

t hel nvent ory. get Vendor Price());
Systemout.printin("\t\tContact: ");

Dat abaseEntry searchKey = nul | ;
try {
sear chKey =
new Dat abaseEnt ry(thel nventory. get Vendor (). get Byt es("UTF-8"));
} catch (1 OException willNeverCeccur) {}
Dat abaseEntry foundVendor = new Dat abaseEntry();

i f (myDbs. get Vendor DB(). get (nul |, searchKey, foundVendor,
LockMode. DEFAULT) !'= OperationStatus. SUCCESS) {
Systemout.println("Could not find vendor: " +
t hel nventory. get Vendor () + ".");
Systemexit(-1);
} else {
Vendor theVendor =
(Vendor) vendor Bi ndi ng. ent ryToQhj ect (f oundVendor) ;
Systemout.println("\t\t " + theVendor. get Address());

9/22/2004 Getting Started with DB Page 62

Cursor Example

}
}

Systemout.printIn("\t\t " + theVendor.getCty() + ", " +

theVendor.get State() + " " + theVendor. get Zi pcode());
Systemout. println("\t\t Business Phone: " +

t heVendor . get Busi nessPhoneNunber ());
Systemout.printIn("\t\t Sales Rep: " +

t heVendor . get RepNane()) ;

Systemout. printIn("\t\t "+

t heVendor . get RepPhoneNunber ()) ;

The remainder of this application provides a utility method used to parse the command
line options. From the perspective of this document, this is relatively uninteresting. You
can see how this is implemented by looking at:

DB I NSTALL/ exanpl es_j aval src/ cont sl eepycat / exanpl es/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.

9/22/2004

Getting Started with DB Page 63

Chapter 5. Secondary Databases

Usually you find database records by means of the record's key. However, the key that
you use for your record will not always contain the information required to provide you
with rapid access to the data that you want to retrieve. For example, suppose your

Dat abase contains records related to users. The key might be a string that is some unique
identifier for the person, such as a user ID. Each record's data, however, would likely
contain a complex object containing details about people such as names, addresses, phone
numbers, and so forth. While your application may frequently want to query a person by
user ID (that is, by the information stored in the key), it may also on occasion want to
location people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn
for a given person's name, you create indexes based on names and then just search that
index for the name that you want. You can do this using secondary databases. In DB, the
Dat abase that contains your data is called a primary database. A database that provides
an alternative set of keys to access that data is called a secondary database In a secondary
database, the keys are your alternative (or secondary) index, and the data corresponds
to a primary record's key.

You create a secondary database by using a Secondar yConfi g class object to identify an
implementation of a Secondar yKeyCr eat or class object that is used to create keys based
on data found in the primary database. You then pass this Secondar yConfi g object to the
Secondar yDat abase constructor.

Once opened, DB manages secondary databases for you. Adding or deleting records in

your primary database causes DB to update the secondary as necessary. Further, changing
arecord's data in the primary database may cause DB to modify a record in the secondary,
depending on whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. To change the data
referenced by a Secondar yDat abase record, modify the primary database instead. The
exception to this rule is that delete operations are allowed on the Secondar yDat abase
object. See Deleting Secondary Database Records (page 71) for more information.

|:| Secondary database records are updated/created by DB only if the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method returnstrue. If f al se is returned, then
DB will not add the key to the secondary database, and in the event of a record update it
will remove any existing key.

See Implementing Key Creators (page 67) for more information on this interface and method.

When you read a record from a secondary database, DB automatically returns the data
and optionally the key from the corresponding record in the primary database.

Opening and Closing Secondary Databases

You manage secondary database opens and closes using the Secondar yDat abase constructor.
Just as is the case with primary databases, you must provide the Secondar yDat abase()
constructor with the database's name and, optionally, other properties such as whether

9/22/2004 Getting Started with DB Page 64

Opening and Closing Secondary
Databases

d
0

uplicate records are allowed, or whether the secondary database can be created on
pen. In addition, you must also provide:

A handle to the primary database that this secondary database is indexing. Note that
this means that secondary databases are maintained only for the specified Dat abase

handle. If you open the same Dat abase multiple times for write (such as might occur
when opening a database for read-only and read-write in the same application), then
you should open the Secondar yDat abase for each such Dat abase handle.

A Secondar yConfi g object that provides properties specific to a secondary database.
The most important of these is used to identify the key creator for the database. The
key creator is responsible for generating keys for the secondary database. See Secondary
Database Properties (page 70) for details.

So to open (create) a secondary database, you:

1.
2.

Open your primary database.

Instantiate your key creator.

Instantiate your Secondar yConfi g object.

Set your key creator object on your Secondar yConfi g object.

Open your secondary database, specifying your primary database and your
Secondar yConfi g at that time.

For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Secondar yDat abase;

i nport com sl eepycat . db. Secondar yConfi g;

i nport java.io.FileNot FoundExcepti on;

Dat abaseConfi g nyDbConfig = new Dat abaseConfi g();
myDbConfi g. set Al | owCreate(true);
myDbConfi g. set Type(Dat abaseType. BTREE) ;

SecondaryConfi g mySecConfig = new SecondaryConfig();
mySecConfi g. set Al | owCreate(true);

mySecConfi g. set Type(Dat abaseType. BTREE) ;

/'l Duplicates are frequently required for secondary databases.

9/22/2004 Getting Started with DB Page 65

Opening and Closing Secondary
Databases

mySecConfi g. set Sort edDupl i cates(true);

/1 Cpen the primry
Dat abase nyDb = nul | ;
Secondar yDat abase mySecDb = nul | ;

try {
String dbNane = "nyPri maryDat abase";

nmyDb = new Dat abase(dbNane, null, myDbConfig);

[/ A fake tuple binding that is not actually inplenented anywhere.
[/ The tuple binding i s dependent on the data in use.

/I Tupl e bindings are described earlier in this mnual.

Tupl eBi ndi ng nyTupl eBi ndi ng = new MyTupl eBi ndi ng();

/1 Open the secondary.
/] Key creators are described in the next section.
Ful | NameKeyCreat or keyCreat or = new Ful | NameKeyCr eat or (myTupl eBi ndi ng) ;

/] CGet a secondary object and set the key creator on it.
mySecConfi g. set KeyCr eat or (keyCreator);

/] Performthe actual open

String secDbNane = "nySecondaryDat abase";

mySecDb = new Secondar yDat abase(secDoName, null, nyDb, nySecConfig);
} catch (DatabaseException de) {

/] Exception handling goes here ...
} catch (FileNot FoundException fnfe) {

/] Exception handling goes here ...
}

To close a secondary database, call its close() method. Note that for best results, you
should close all the secondary databases associated with a primary database before closing
the primary.

For example:

try {
if (nySecDb !'= null) {
mySecDb. cl ose();
}

if (nyDo !'=null) {
myDb. cl ose();

}
} catch (DatabaseException dbe) {
[/ Exception handling goes here
}

9/22/2004 Getting Started with DB Page 66

Implementing Key Creators

Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary
records. You identify this class using the Secondar yConfi g. set KeyCreat or () method.

You can create keys using whatever data you want. Typically you will base your key on
some information found in a record's data, but you can also use information found in the
primary record's key. How you build your keys is entirely dependent upon the nature of
the index that you want to maintain.

You implement a key creator by writing a class that implements the Secondar yKeyCr eat or
interface. This interface requires you to implement the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method.

One thing to remember when implementing this method is that you will need a way to
extract the necessary information from the data Dat abaseEnt ry and/or the key

Dat abaseEnt ry that are provided on calls to this method. If you are using complex objects,
then you are probably using the Bind APIs to perform this conversion. The easiest thing
to do is to instantiate the Ent ryBi ndi ng or Tupl eBi ndi ng that you need to perform the
conversion, and then provide this to your key creator's constructor. The Bind APIs are
introduced in Using the BIND APIs (page 25).

Also, Secondar yKeyCr eat or . cr eat eSecondar yKey() returns a boolean. A return value of
fal se indicates that no secondary key exists, and therefore no record should be added
to the secondary database for that primary record. If a record already exists in the
secondary database, it is deleted.

For example, suppose your primary database uses the following class for its record data:

package com sl eepycat . exanpl es. db. GettingStart ed,;

public class PersonData {
private String userlD;
private String surnane;
private String famliarName;

publ i c PersonData(String userlD, String surname, String famliarName) {
this.userlD = userlD;
this.surname = surname;
this.famliarName = famliarName;

}

public String getUserlD() {
return userlD;

}

public String getSurname() {
return surnane;

}

9/22/2004 Getting Started with DB Page 67

Implementing Key Creators

public String getFam |iarName() {
return famliarNang;
}

}

Also, suppose that you have created a custom tuple binding, Per sonDat aBi ndi ng, that you
use to convert Per sonDat a objects to and from Dat abaseEnt ry objects. (Custom tuple
bindings are described in Custom Tuple Bindings (page 32).)

Finally, suppose you want a secondary database that is keyed based on the person's full
name.

Then in this case you might create a key creator as follows:

package com sl eepycat . exanpl es. db. GettingStarted,;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . db. Secondar yKeyCr eat or ;
i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Secondar yDat abase;

i mport java.io.lOException;
public class Full NanmeKeyCreator inplenments SecondaryKeyCreator {
private Tupl eBinding theBi nding;

public Ful | NameKeyCr eat or (Tupl eBi ndi ng t heBi ndi ngl) {
t heBi ndi ng = t heBi ndi ng1;
}

publ i ¢ bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry,
Dat abaseEntry dataEntry,
Dat abaseEntry resul tEntry) {

Il 1f the dataEntry parameter is null, then we can
Il not create the key
if (dataEntry == null) {
return fal se;
} else { /I Create the key
try {
PersonData pd =
(PersonDat a) theBinding.entryTohj ect (dataEntry);
String full Name = pd.getFaniliarName() + " " +
pd. get Sur nane() ;
resul tEntry. set Data(ful | Name. get Bytes(" UTF-8"));
} catch (1 OException willNeverCeccur) {}

9/22/2004 Getting Started with DB Page 68

Implementing Key Creators

}

return true;

Finally, you use this key creator as follows:

package com sl eepycat . exanpl es. db. GettingStarted;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Secondar yDat abase;
i nport com sl eepycat . db. Secondar yConfi g;

i nport java.io.FileNot FoundExcepti on;

Dat abase nyDb = nul | ;
Secondar yDat abase mySecDb = nul | ;

try {

/1 Primary database open omitted for brevity

Tupl eBi ndi ng nyDat aBi ndi ng = new MyTupl eBi ndi ng() ;
Ful | NameKeyCreat or fnkc = new Ful | NameKeyCr eat or (myDat aBi ndi ng) ;

Secondar yConfi g mySecConfig = new SecondaryConfig();
mySecConfi g. set KeyCr eat or (f nkc) ;
mySecConfi g. set Type(Dat abaseType. BTREE) ;

[/ Performthe actual open
String secDbNane = "nySecondaryDat abase";
mySecDb = new Secondar yDat abase(secDoNane, null, nyDb, nySecConfig);

} catch (DatabaseException de) {

/1 Exception handling goes here

} catch (FileNot FoundException fnfe) {

/1 Exception handling goes here

} finally {

try {
if (nmySecDb != null) {

mySecDb. cl ose();
}

if (myDo !'=null) {
myDb. cl ose() ;

} catch (DatabaseException dbe) {

9/22/2004

Getting Started with DB Page 69

Secondary Database Properties

Il Exception handling goes here

}
Secondary Database Properties

Secondary databases accept Secondar yConfi g objects. Secondar yConfi g is a subclass of
Dat abaseConfi g, so it can manage all of the same properties as does Dat abaseConfi g. See
Database Properties (page 11) for more information.

In addition to the Dat abaseConfi g properties, Secondar yConf i g also allows you to manage
the following properties:

o SecondaryConfig. set Al | owPopul at e()

If true, the secondary database can be autopopulated. This means that on open, if
the secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

e SecondaryConfig. set KeyCreator ()

Identifies the key creator object to be used for secondary key creation. See
Implementing Key Creators (page 67) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by
using the Secondar yDat abase. get () method, or by using a Secondar yCur sor . The main
difference between reading secondary and primary databases is that when you read a
secondary database record, the secondary record's data is not returned to you. Instead,
the primary key and data corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full
name:

package com sl eepycat . exanpl es. db. GettingStart ed,;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Operati onSt at us;

i nport com sl eepycat . db. Secondar yDat abase;

Secondar yDat abase mySecondar yDat abase = nul | ;

try {
[/ Ortting all database opens

String searchName = "John Doe";
Dat abaseEntry searchKey =

9/22/2004 Getting Started with DB Page 70

Deleting Secondary Database
Records

new Dat abaseEnt ry(searchNane. get Byt es(" UTF-8"));
Dat abaseEntry primaryKey = new Dat abaseEntry();
Dat abaseEntry primaryData = new DatabaseEntry();

/] Get the primary key and data for the user 'John Doe'.
OperationStatus retVal = mySecondaryDat abase. get (nul |, searchKey,
pri maryKey,
pri mar yDat a,
LockMde. DEFAULT) ;
} catch (Exception e) {
/] Exception handling goes here

}

Note that, just like Dat abase. get (), if your secondary database supports duplicate records
then Secondar yDat abase. get () only return the first record found in a matching duplicates
set. If you want to see all the records related to a specific secondary key, then use a
Secondar yCur sor (described in Using Secondary Cursors (page 72)).

Deleting Secondary Database Records

In general, you will not modify a secondary database directly. In order to modify a
secondary database, you should modify the primary database and simply allow DB to
manage the secondary modifications for you.

However, as a convenience, you can delete a Secondar yDat abase record directly. Doing
so causes the associated primary key/data pair to be deleted. This in turn causes DB to
delete all Secondar yDat abase records that reference the primary record.

You can use the Secondar yDat abase. del et () method to delete a secondary database
record. Note that if your Secondar yDat abase contains duplicate records, then deleting a
record from the set of duplicates causes all of the duplicates to be deleted as well.

|:| Secondar yDat abase. del et e() causes the previously describe delete operations to occur only
if:

« the SecondaryKeyCreat or. cr eat eSecondar yKey() method returns t r ue (see Implementing
Key Creators (page 67) for information on this interface and method).

» the primary database is opened for write access.

If either of these conditions are not met, then no delete operations can be performed on
the secondary database.

For example:

package com sl eepycat . exanpl es. db. GettingStart ed,;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Operati onSt at us;

i nport com sl eepycat . db. Secondar yDat abase;

9/22/2004 Getting Started with DB Page 71

Using Secondary Cursors

try {
Secondar yDat abase nmySecondar yDat abase = nul | ;
[/ Omtting all database opens

String searchNane = "John Doe";
Dat abaseEntry searchKey =
new Dat abaseEnt ry(sear chNanme. get Byt es("UTF-8"));

/] Delete the first secondary record that uses "John Doe" as

/] a key. This causes the primary record referenced by this secondary

[/ record to be deleted.

OperationStatus retVal = nySecondaryDat abase. del ete(nul |, searchKey);
} catch (Exception e) {

/] Exception handling goes here

}
Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors
to search for specific records in a database, to seek to the first or last record in the
database, to get the next duplicate record, and so forth. For a complete description on
cursors and their capabilities, see Using Cursors (page 47).

However, when you use secondary cursors:

« Any data returned is the data contained on the primary database record referenced
by the secondary record.

e SecondaryCursor. get Sear chBot h() and related methods do not search based on a
key/data pair. Instead, you search based on a secondary key and a primary key. The
data returned is the primary data that most closely matches the two keys provided
for the search.

For example, suppose you are using the databases, classes, and key creators described
in Implementing Key Creators (page 67). Then the following searches for a person's name
in the secondary database, and deletes all secondary and primary records that use that
name.

package com sl eepycat . exanpl es. db. GettingStarted,;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. LockMode;

i mport com sl eepycat . db. Operati onSt at us;

i nport com sl eepycat . db. Secondar yDat abase;
i nport com sl eepycat . db. Secondar yCur sor;

9/22/2004 Getting Started with DB Page 72

Database Joins

try {
Secondar yDat abase nySecondar yDat abase = nul | ;
/| Database opens omtted for brevity

String secondaryNanme = "John Doe";
Dat abaseEntry secondaryKey =
new Dat abaseEnt ry(secondar yNane. get Byt es(" UTF-8"));

Dat abaseEntry foundData = new Dat abaseEntry();

Secondar yCursor nySecCursor =
my Secondar yDat abase. openSecondar yCur sor (nul |, null);

OperationStatus retVal = mySecCursor. get Sear chKey(secondar yKey,
f oundDat a,
LockMbde. DEFAULT) ;
while (retVal == QperationStatus. SUCCESS) {
mySecCur sor . del et e();
retVal = mySecCursor. get Next Dup(secondar yKey,
f oundDat a,
LockMbde. DEFAULT) ;

}
} catch (Exception e) {

/] Exception handling goes here
}

Database Joins

If you have two or more secondary databases associated with a primary database, then
you can retrieve primary records based on the union of multiple secondary entries. You
do this using a Joi nCur sor .

Throughout this document we have presented a class that stores inventory information
on grocery That class is fairly simple with a limited number of data members, few of
which would be interesting from a query perspective. But suppose, instead, that we were
storing information on something with many more queryable characteristics, such as an
automobile. In that case, you may be storing information such as color, number of doors,
fuel mileage, automobile type, number of passengers, make, model, and year, to name
just a few.

In this case, you would still likely be using some unique value to key your primary entries
(in the United States, the automobile's VIN would be ideal for this purpose). You would
then create a class that identifies all the characteristics of the automobiles in your
inventory. You would also have to create some mechanism by which you would move
instances of this class in and out of Java byt e arrays. We described the concepts and
mechanisms by which you can perform these activities in Database Records (page 19).

9/22/2004 Getting Started with DB Page 73

Database Joins

To query this data, you might then create multiple secondary databases, one for each of
the characteristics that you want to query. For example, you might create a secondary

for color, another for number of doors, another for number of passengers, and so forth.
Of course, you will need a unique key creator for each such secondary database. You do
all of this using the concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you
have is the ability to retrieve automobile records based on a single characteristic. You
can, for example, find all the automobiles that are red. Or you can find all the automobiles
that have four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example,
you might want to find all the automobiles that are red, and that were built by Toyota,
and that are minivans. You can do this using a Joi nCur sor class instance.

Using Join Cursors
To use a join cursor:

« Open two or more secondary cursors. These cursors for secondary databases that are
associated with the same primary database.

« Position each such cursor to the secondary key value in which you are interested. For
example, to build on the previous description, the cursor for the color database is
positioned to the red records while the cursor for the model database is positioned
to the mi ni van records, and the cursor for the make database is positioned to Toyot a.

« Create an array of secondary cursors, and place in it each of the cursors that are
participating in your join query.

o Obtain a join cursor. You do this using the Dat abase. j oi n() method. You must pass
this method the array of secondary cursors that you opened and positioned in the
previous steps.

» lterate over the set of matching records using Joi nCur sor. get Next () until
Oper ati onSt at us is not SUCCESS.

o Close your join cursor.
« If you are done with them, close all your secondary cursors.

For example:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;
i mport com sl eepycat . db. Joi nCur sor;

i nport com sl eepycat . db. LockMode;

i nport com sl eepycat . db. Gperati onSt at us;

9/22/2004 Getting Started with DB Page 74

Database Joins

i nport com sl eepycat . db. Secondar yCur sor;
i nport com sl eepycat . db. Secondar yDat abase;

/| Database and secondary database opens omtted for brevity.
[/ Assume a primary database handl e:

Iy

aut omot i veDB

/1 Assume 3 secondary database handl es:

Iy
Iy
Iy

autompt i veCol orDB -- index based on autonobile col or
autonoti veTypeDB -- index based on autonobile type
aut onot i veMakeDB -- index based on the manufacturer

Dat abase aut onotiveDB = nul | ;

Secondar yDat abase aut onotiveCol orDB = nul | ;
Secondar yDat abase aut onotiveTypeDB = nul | ;
Secondar yDat abase aut oot i veMakeDB = nul | ;

[l Query strings:

String theColor = "red";
String theType = "mnivan";
String theMake = "Toyota";

/| Secondary cursors used for the query:
Secondar yCursor col or SecCursor = null;
Secondar yCursor typeSecCursor = null;
Secondar yCur sor makeSecCursor = null;

/1 The join cursor
Joi nCursor joinCursor = null;

/| These are needed for our queries
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

/1 Al cursor operations are enclosed in a try block to ensure that they
/1 get closed in the event of an exception.

try {

/| Database entries used for the query:

Dat abaseEntry col or = new Dat abaseEntry(theCol or. get Byt es("UTF-8"));
Dat abaseEntry type = new Dat abaseEnt ry(theType. get Byt es("UTF-8"));
Dat abaseEntry make = new Dat abaseEnt ry(t heMake. get Byt es("UTF-8"));

col or SecCursor = aut onot i veCol or DB. openSecondar yCursor (nul |, null);
t ypeSecCur sor = aut onot i veTypeDB. openSecondar yCursor (null, null);
makeSecCur sor = aut onot i veMakeDB. openSecondar yCur sor (nul |, null);

/] Position all our secondary cursors to our query val ues.
OperationStatus col orRet =

9/22/2004

Getting Started with DB Page 75

Database Joins

col or SecCur sor . get Sear chKey(col or, foundData, LockMdde. DEFAULT);
OperationStatus typeRet =

t ypeSecCur sor . get Sear chKey(type, foundData, LockMbde. DEFAULT);
OperationStatus makeRet =

makeSecCur sor . get Sear chKey(nmake, foundData, LockMde. DEFAULT);

[/ If all our searches returned successfully, we can proceed
if (colorRet == QperationStatus. SUCCESS &&

typeRet == QperationStatus. SUCCESS &&

mekeRet == OperationStat us. SUCCESS) {

Il Get a secondary cursor array and popul ate it with our
Il positioned cursors
SecondaryCursor[] cursorArray = {col or SecCursor,
t ypeSecCursor,
makeSecCur sor};

Il Create the join cursor
joinCursor = autonotiveDB.join(cursorArray, null);

Il Now iterate over the results, handling each in turn
whi l e (joinCursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

/1 Do something with the key and data retrieved in
/1 foundKey and foundDat a
}
}
} catch (DatabaseException dbe) {
[/ Error reporting goes here
} catch (Exception e) {
[/ Error reporting goes here

} finally {

try {
/1 Make sure to close out all our cursors

if (colorSecCursor !'=null) {
col or SecCursor. cl ose();

}

if (typeSecCursor != null) {
typeSecCursor. cl ose();

}

if (makeSecCursor != null) {
makeSecCur sor. cl ose();

}

if (joinCursor !'=null) {
joinCursor.close();

}

} catch (DatabaseException dbe) {
Il Error reporting goes here

9/22/2004 Getting Started with DB Page 76

Secondary Database Example

}
JoinCursor Properties

You can set Joi nCur sor properties using the Joi nConfi g class. Currently there is just one
property that you can set:

e JoinConfig.setNoSort()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted
from the one that refers to the least number of data items to the one that refers to
the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with
fewer data items. Turning off sorting permits applications to specify cursors in the
proper order given this scenario.

Default value is f al se (automatic cursor sorting is performed).

For example:

[/ Al database and environments onitted

JoinConfig config = new Joi nConfig();

config.setNoSort (true);

Joi nCursor joinCursor = myDb.join(cursorArray, config);

Secondary Database Example

In previous chapters in this book, we built applications that load and display several DB
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

« In Stored Class Catalog Management with MyDbs (page 40) we built a class that we
can use to open several Dat abase objects. In Opening Secondary Databases with
MyDbs (page 79) we will extend that class to also open and manage a
Secondar yDat abase.

« In Cursor Example (page 59) we built an application to display our inventory database
(and related vendor information). In Using Secondary Databases with
ExampleDatabaseRead (page 82) we will extend that application to show inventory
records based on the index we cause to be loaded using Exanpl eDat abaselLoad.

Before we can use a secondary database, we must implement a class to extract secondary
keys for us. We use | t emNameKeyCr eat or for this purpose.

9/22/2004 Getting Started with DB Page 77

Secondary Database Example

Example 5.1. temNameKeyCreator.java

This class assumes the primary database uses | nvent ory objects for the record data. The
I nventory class is described in Inventory.java (page 36).

In our key creator class, we make use of a custom tuple binding called | nvent or yBi ndi ng.
This class is described in InventoryBinding.java (page 38).

You can find I nvent or yBi ndi ng. j ava in:

DB_I NSTALL/ exanpl es_j aval src/ con sl eepycat/ exanpl es/ db/ GettingStarted

where DB | NSTALL is the location where you placed your DB distribution.
package com sl eepycat . exanpl es. db. GettingStart ed;

i nport com sl eepycat . db. Dat abaseEnt ry;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Secondar yDat abase;

i nport com sl eepycat . db. Secondar yKeyCr eat or ;
i nport com sl eepycat. bi nd. tupl e. Tupl eBi ndi ng;

inport java.io.lCException;
public class ItenmNaneKeyCreator inplements SecondaryKeyCreator {
private Tupl eBi ndi ng t heBi ndi ng;

/'l Use the constructor to set the tuple binding
I t emNaneKeyCr eat or (Tupl eBi ndi ng bi ndi ng) {

t heBi ndi ng = bi ndi ng;
}

/1 Abstract nmethod that we nust inplement

public bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry, [l Fromthe primry
Dat abaseEntry dataEntry, [l Fromthe primry
Dat abaseEntry resultEntry) // set the key data on this.
t hrows Dat abaseException {

if (datakntry == null) {
t hrow new Dat abaseException("Mssing prinmary record data " +
"in key creator.");

}

try {
/I Convert dataEntry to an Inventory object

I nventory inventoryltem=
(I'nventory) theBinding.entryToQoj ect (dataEntry);
[l Get the itemnane and use that as the key

9/22/2004 Getting Started with DB Page 78

Secondary Database Example

String theltem = inventoryltem get!tenmang(
resul t Entry. set Data(thel tem get Byt es(" UTF-8
} catch (1OException willNeverCeccur) {}

)
"))

return true;

}

Now that we have a key creator, we can use it to generate keys for a secondary database.
We will now extend MyDbs to manage a secondary database, and to use | t enNaneKeyCr eat or
to generate keys for that secondary database.

Opening Secondary Databases with MyDbs

In Stored Class Catalog Management with MyDbs (page 40) we built M/Dbs as an example
of a class that encapsulates Dat abase opens and closes. We will now extend that class to
manage a Secondar yDat abase.

Example 5.2. SecondaryDatabase Management with MyDbs

We start by importing two additional classes needed to support secondary databases. We
also add a global variable to use as a handle for our secondary database.

Il File MyDbs.java
package com sl eepycat . exanpl es. db. GettingStarted;

i nport java.io.FileNot FoundExcepti on;

i nport com sl eepycat. bi nd. serial . Storedd assCat al og;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Secondar yConfi g;

i nport com sl eepycat . db. Secondar yDat abase;

public class MDbs {

/1 The databases that our application uses
private Database vendorDb = null;

private Database inventoryDb = null;

private Database classCatal ogDb = null;

private SecondaryDat abase itenmNanmel ndexDb = nul | ;

private String vendordb = "Vendor DB. db";

private String inventorydb = "l nventoryDB. db";

private String classcatal ogdb = "C assCat al ogDB. db";
private String itemanei ndexdb = "ItemNanel ndexDB. db";

9/22/2004 Getting Started with DB Page 79

Secondary Database Example

/] Needed for object serialization
private Storedd assCatal og cl assCat al og;

[/ Qur constructor does nothing
public MyDbs() {}

Next we update the MyDbs. set up() method to open the secondary database. As a part of
this, we have to pass an | t emNaneKeyCr eat or object on the call to open the secondary
database. Also, in order to instantiate | t emNaneKeyCr eat or , we need an | nvent or yBi ndi ng
object (we described this class in InventoryBinding.java (page 38)). We do all this work
together inside of MyDbs. setup().

public void setup(String databasesHone)
throws Dat abaseException {
Dat abaseConfig myDbConfi g = new DatabaseConfig();
Secondar yConfi g nySecConfig = new SecondaryConfig();

myDbConfi g. set Error Strean(Systemerr);
mySecConfi g. set Error Strean(Systemerr);
myDbConfi g. set Error Prefix("MDbs");
mySecConfi g. set ErrorPrefix("MDbs");
myDbConfi g. set Type(Dat abaseType. BTREE) ;
mySecConfi g. set Type(Dat abaseType. BTREE) ;
myDbConfig. set Al | owCreate(true);
mySecConfi g. set Al | owCreate(true);

/1 Now open, or create and open, our databases
/1 QOpen the vendors and inventory databases

try {
vendordb = databasesHone + "/" + vendor db;
vendor Db = new Dat abase(vendor db,
nul I,
myDbConfi g) ;

dat abasesHone + "/" + inventorydb;
new Dat abase(i nvent orydb,

null,

myDbConfi g);

i nvent orydb
i nvent oryDb

/1 Open the class catalog db. This is used to
/1 optimze class serialization.
cl asscat al ogdb = dat abasesHone + "/" + cl asscat al ogdb;
cl assCat al ogDb = new Dat abase(cl asscat al ogdb,

null,

myDbConfi g) ;

} catch(FileNot FoundException fnfe) {

Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

9/22/2004 Getting Started with DB Page 80

Secondary Database Example

}

Il Create our class catal og
classCatal og = new Storedd assCat al og(cl assCat al ogDb) ;

Il Need a tuple binding for the Inventory class.

/1 W use the InventoryBinding class

Il that we inplenented for this purpose.

Tupl eBi ndi ng i nvent or yBi ndi ng = new | nvent oryBi ndi ng();

Il Open the secondary database. W use this to create a
Il secondary index for the inventory database

[/ W want to maintain an index for the inventory entries based
Il on the itemnanme. So, instantiate the appropriate key creator
/'l and open a secondary dat abase.
| t emNaneKeyCreat or keyCreator =

new |t emNameKeyCr eat or (new | nvent or yBi ndi ng());

/1 Set up additional secondary properties

Il Need to allow duplicates for our secondary database
mySecConfi g. set Sort edDupl i cat es(true);

mySecConfi g. set Al | owPopul ate(true); // Al ow autopopul ate
mySecConfi g. set KeyCreat or (keyCreator);

/1 Now open it
try {
i t ermanei ndexdb = dat abasesHome + "/" + itemanei ndexdb;
i t emNanmel ndexDb = new Secondar yDat abase(i t ermanei ndexdb,
null,
i nvent oryDb,
mySecConfi g);

} catch(FileNot FoundException fnfe) {
Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

Next we need an additional getter method for returning the secondary database.

publ i ¢ SecondaryDat abase get Nanel ndexDB() {
return itenmNanel ndexDb;

}

Finally, we need to update the MyDbs. cl ose() method to close the new secondary
database. We want to make sure that the secondary is closed before the primaries. While
this is not necessary for this example because our closes are single-threaded, it is still a
good habit to adopt.

9/22/2004 Getting Started with DB Page 81

Secondary Database Example

public void close() {
try {
if (itemNamel ndexDb !'= null) {
i t emNamel ndexDb. cl ose() ;

}

if (vendorDb != null) {
vendor Db. cl ose();

}

if (inventoryDb !'= null) {
i nvent oryDb. cl ose();

}

if (classCatalogDb != null) {
cl assCat al ogDb. cl ose();

}

} catch(DatabaseException dbe) {
Systemerr.println("Error closing MWDbs: " +
dbe.toString());
Systemexit(-1);

}

That completes our update to MyDbs. You can find the complete class implementation in:

DB | NSTALL/ exanpl es_j aval src/ cont sl eepycat / exanpl es/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

Using Secondary Databases with ExampleDatabaseRead

Because we performed all our secondary database configuration management in MyDbs,
we do not need to modify Exanpl eDat abaseLoad at all in order to create our secondary
indices. When Exanpl eDat abaseLoad calls MyDbs. set up(), all of the necessary work is
performed for us.

However, we still need to take advantage of the new secondary indices. We do this by
updating Exanpl eDat abaseRead to allow us to query for an inventory record based on its
name. Remember that the primary key for an inventory record is the item's SKU. The
item’'s name is contained in the | nvent ory object that is stored as each record's data in
the inventory database. But our new secondary index now allows us to easily query based
on the item’'s name.

For this update, we modify Exanpl eDat abaseRead to accept a new command line switch,
-5, whose argument is the name of an inventory item. If the switch is present on the

command line call to Exanpl eDat abaseRead, then the application will use the secondary
database to look up and display all the inventory records with that item name. Note that

9/22/2004 Getting Started with DB Page 82

Secondary Database Example

we use a Secondar yCur sor to seek to the item name key and then display all matching

records.

Remember that you can find Exanpl eDat abaseRead. j ava in:

DB_I NSTALL/ exanpl es_j

aval/ src/ con sl eepycat / exanpl es/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

Example 5.3. SecondaryDatabase usage with ExampleDatabaseRead

First we need to import an additional class in order to use the secondary cursor:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport java.io.lOException;

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.

bi nd. Ent ryBi ndi ng;

bi nd. seri al . Seri al Bi ndi ng;
bi nd. t upl e. Tupl eBi ndi ng;
db. Cursor;

db. Dat abaseEntry;

db. Dat abaseExcepti on;

db. LockMbde;

db. Qper ati onSt at us;

db. Secondar yCur sor ;

Next we add a single global variable:

public class Exanpl eDat abaseRead {

private static String myDbsPath ="./";

/1 Encapsul ates the database environnment and dat abases.
private static MyDbs nyDbs = new MyDbs();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBi nding;

/I The itemto locate if the -s switch is used
private static String locateltem

Next we update Exanpl eDat abaseRead. run() to check to see if the | ocat el t emglobal
variable has a value. If it does, then we show just those records related to the item name

passed on the - s switch.

private void run(String args[])
throws Dat abaseException {

[l Parse the

argunents |ist

par seArgs(args);

9/22/2004

Getting Started with DB Page 83

Secondary Database Example

myDbs. set up(myDbsPat h) ;

Il Setup our bindings.
i nvent oryBi ndi ng = new I nventoryBindi ng();
vendor Bi nding =
new Seri al Bi ndi ng(myDbs. get O assCat al og(),
Vendor . cl ass) ;

if (locateltem!= null) {
showt ten();

} else {
showAl | I nvent ory();

}
}

Finally, we need to implement Exanpl eDat abaseRead. show t en() . This is a fairly simple
method that opens a secondary cursor, and then displays every primary record that is
related to the secondary key identified by the | ocat el t emglobal variable.

private void show ten() throws DatabaseException {
SecondaryCursor secCursor = null;
try {
Il searchKey is the key that we want to find in the
/'l secondary db.
Dat abaseEntry searchKey =
new Dat abaseEnt ry(l ocateltem get Bytes("UTF-8"));

/1 foundKey and foundData are popul ated fromthe primry
Il entry that is associated with the secondary db key.
Dat abaseEntry foundKey = new Dat abaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

/1 open a secondary cursor
secCQursor =
myDbs. get Nanel ndexDB() . openSecondar yCur sor (nul |, null);

/1 Search for the secondary database entry.
(perationStatus retVal =
secCursor. get Sear chKey(sear chKey, foundKey,
foundData, LockMyde. DEFAULT);

/I Display the entry, if one is found. Repeat until no nore
/| secondary duplicate entries are found
while(retVal == OperationStatus. SUCCESS) {
Inventory thelnventory =
(I'nventory)invent oryBi ndi ng. entryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);
retVal = secCursor. get Next Dup(sear chKey, foundKey,
foundData, LockMyde. DEFAULT);

9/22/2004

Getting Started with DB Page 84

Secondary Database Example

}
} catch (Exception e)

{
Systemerr.printIn("Error on inventory secondary cursor:");
Systemerr.println(e.toString());
e.print StackTrace()
} finally {
if (secCursor !'=null) {
secCursor. close();

}

}

The only other thing left to do is to update Exanpl eDat abaseRead. par seAr gs() to support
the -s command line switch. To see how this is done, see Exanpl eDat abaseRead. j ava in:

DB I NSTALL/ exanpl es_j aval src/ con sl eepycat / exanpl es/ db/ GettingStarted

where DB_| NSTALL is the location where you placed your DB distribution.

9/22/2004 Getting Started with DB Page 85

Chapter 6. Database Configuration

This chapter describes some of the database and cache configuration issues that you need
to consider when building your DB database. In most cases, there is very little that you
need to do in terms of managing your databases. However, there are configuration issues
that you need to be concerned with, and these are largely dependent on the access
method that you are choosing for your database.

The examples and descriptions throughout this document have mostly focused on the
BTree access method. This is because the majority of DB applications use BTree. For this
reason, where configuration issues are dependent on the type of access method in use,
this chapter will focus on BTree only. For configuration descriptions surrounding the other
access methods, see the Berkeley DB Programmer's Tutorial and Reference Guide.

Setting the Page Size

Internally, DB stores database entries on pages. Page sizes are important because they
can affect your application's performance.

DB pages can be between 512 bytes and 64K bytes in size. The size that you select must
be a power of 2. You set your database's page size using Dat abaseConfi g. set PageSi ze() .

Note that a database's page size can only be selected at database creation time.
When selecting a page size, you should consider the following issues:

o Overflow pages.

« Locking

» Disk /0.

These topics are discussed next.
Overflow Pages

Overflow pages are used to hold a key or data item that cannot fit on a single page. You
do not have to do anything to cause overflow pages to be created, other than to store
data that is too large for your database's page size. Also, the only way you can prevent
overflow pages from being created is to be sure to select a page size that is large enough
to hold your database entries.

Because overflow pages exist outside of the normal database structure, their use is
expensive from a performance perspective. If you select too small of a page size, then
your database will be forced to use an excessive number of overflow pages. This will
significantly harm your application’s performance.

For this reason, you want to select a page size that is at least large enough to hold multiple
entries given the expected average size of your database entries. In BTree's case, for best
results select a page size that can hold at least 4 such entries.

9/22/2004 Getting Started with DB Page 86

Setting the Page Size

You can see how many overflow pages your database is using by obtaining a Dat abaseSt at s
object using the Dat abase. get St at s() method, or by examining your database using the
db_stat command line utility.

Locking

Locking and multi-threaded access to DB databases is built into the product. However,
in order to enable the locking subsystem and in order to provide efficient sharing of the
cache between databases, you must use an environment. Environments and multi-threaded
access are not fully described in this manual (see the Berkeley DB Programmer's Reference
Manual for information), however, we provide some information on sizing your pages in
a multi-threaded/multi-process environment in the interest of providing a complete
discussion on the topic.

If your application is multi-threaded, or if your databases are accessed by more than one
process at a time, then page size can influence your application's performance. The reason
why is that for most access methods (Queue is the exception), DB implements page-level
locking. This means that the finest locking granularity is at the page, not at the record.

In most cases, database pages contain multiple database records. Further, in order to
provide safe access to multiple threads or processes, DB performs locking on pages as
entries on those pages are read or written.

As the size of your page increases relative to the size of your database entries, the number
of entries that are held on any given page also increase. The result is that the chances
of two or more readers and/or writers wanting to access entries on any given page also
increases.

When two or more threads and/or processes want to manage data on a page, lock
contention occurs. Lock contention is resolved by one thread (or process) waiting for
another thread to give up its lock. It is this waiting activity that is harmful to your
application's performance.

It is possible to select a page size that is so large that your application will spend excessive,
and noticeable, amounts of time resolving lock contention. Note that this scenario is
particularly likely to occur as the amount of concurrency built into your application
increases.

Oh the other hand, if you select too small of a page size, then that that will only make
your tree deeper, which can also cause performance penalties. The trick, therefore, is
to select a reasonable page size (one that will hold a sizeable number of records) and
then reduce the page size if you notice lock contention.

You can examine the number of lock conflicts and deadlocks occurring in your application
by examining your database environment lock statistics. Either use the method, or use
the db_stat command line utility. The number of locks that could not be obtained due
to conflicts is held in the lock statistic's st _nconflicts field.

9/22/2004 Getting Started with DB Page 87

Setting the Page Size

IO Efficiency

Page size can affect how efficient DB is at moving data to and from disk. For some
applications, especially those for which the in-memory cache can not be large enough to
hold the entire working dataset, 10 efficiency can significantly impact application
performance.

Most operating systems use an internal block size to determine how much data to move
to and from disk for a single 1/0 operation. This block size is usually equal to the
filesystem's block size. For optimal disk 1/0 efficiency, you should select a database page
size that is equal to the operating system's I/0 block size.

Essentially, DB performs data transfers based on the database page size. That is, it moves
data to and from disk a page at a time. For this reason, if the page size does not match
the 1/0 block size, then the operating system can introduce inefficiencies in how it
responds to DB's /0 requests.

For example, suppose your page size is smaller than your operating system block size. In
this case, when DB writes a page to disk it is writing just a portion of a logical filesystem
page. Any time any application writes just a portion of a logical filesystem page, the
operating system brings in the real filesystem page, over writes the portion of the page
not written by the application, then writes the filesystem page back to disk. The net
result is significantly more disk I/0 than if the application had simply selected a page
size that was equal to the underlying filesystem block size.

Alternatively, if you select a page size that is larger than the underlying filesystem block
size, then the operating system may have to read more data than is necessary to fulfill
a read request. Further, on some operating systems, requesting a single database page
may result in the operating system reading enough filesystem blocks to satisfy the operating
system’s criteria for read-ahead. In this case, the operating system will be reading
significantly more data from disk than is actually required to fulfill DB's read request.

|:| While transactions are not discussed in this manual, a page size other than your filesystem's

block size can affect transactional guarantees. The reason why is that page sizes larger than

the filesystem's block size causes DB to write pages in block size increments. As a result, it

is possible for a partial page to be written as the result of a transactional commit. For more
information, see http://www.sleepycat.com/docs/ref/transapp/reclimit.html.

Page Sizing Advice

Page sizing can be confusing at first, so here are some general guidelines that you can
use to select your page size.

In general, and given no other considerations, a page size that is equal to your filesystem
block size is the ideal situation.

If your data is designed such that 4 database entries cannot fit on a single page (assuming
BTree), then grow your page size to accommodate your data. Once you've abandoned
matching your filesystem’s block size, the general rule is that larger page sizes are better.

9/22/2004 Getting Started with DB Page 88

http://www.sleepycat.com/docs/ref/transapp/reclimit.html

Selecting the Cache Size

The exception to this rule is if you have a great deal of concurrency occurring in your
application. In this case, the closer you can match your page size to the ideal size needed
for your application’s data, the better. Doing so will allow you to avoid unnecessary
contention for page locks.

Selecting the Cache Size

Cache size is important to your application because if it is set to too small of a value,
your application’'s performance will suffer from too much disk I/0. On the other hand, if
your cache is too large, then your application will use more memory than it actually
needs. Moreover, if your application uses too much memory, then on most operating
systems this can result in your application being swapped out of memory, resulting in
extremely poor performance.

You select your cache size using either Dat abaseConfi g. set CacheSi ze(), or

Envi ronment Confi g. set CacheSi ze() , depending on whether you are using a database
environment or not. You cache size must be a power of 2, but it is otherwise limited only
by available memory and performance considerations.

Selecting a cache size is something of an art, but fortunately it is selected at database
(or environment) open time, so it can be easily tuned to your application’'s data
requirements as they change over time. The best way to determine how large your cache
needs to be is to put your application into a production environment and watch to see
how much disk /0 is occurring. If your application is going to disk quite a lot to retrieve
database records, then you should increase the size of your cache (provided that you have
enough memory to do so).

You can use the db_st at command line utility with the - moption to gauge the effectiveness
of your cache. In particular, the number of pages found in the cache is shown, along with
a percentage value. The closer to 100% that you can get, the better. If this value drops
too low, and you are experiencing performance problems, then you should consider
increasing the size of your cache, assuming you have memory to support it.

BTree Configuration

In going through the previous chapters in this book, you may notice that we touch on
some topics that are specific to BTree, but we do not cover those topics in any real detail.
In this section, we will discuss configuration issues that are unique to BTree.

Specifically, in this section we describe:
o Allowing duplicate records.

o Setting comparator callbacks.

9/22/2004 Getting Started with DB Page 89

BTree Configuration

Allowing Duplicate Records

BTree databases can contain duplicate records. One record is considered to be a duplicate
of another when both records use keys that compare as equal to one another.

By default, keys are compared using a lexicographical comparison, with shorter keys
collating higher than longer keys. You can override this default using the
Dat abaseConfi g. set Bt r eeConpar at or () method. See the next section for details.

By default, DB databases do not allow duplicate records. As a result, any attempt to write
a record that uses a key equal to a previously existing record results in the previously
existing record being overwritten by the new record.

Allowing duplicate records is useful if you have a database that contains records keyed
by a commonly occurring piece of information. It is frequently necessary to allow duplicate
records for secondary databases.

For example, suppose your primary database contained records related to automobiles.
You might in this case want to be able to find all the automobiles in the database that
are of a particular color, so you would index on the color of the automobile. However,
for any given color there will probably be multiple automobiles. Since the index is the
secondary key, this means that multiple secondary database records will share the same
key, and so the secondary database must support duplicate records.

Sorted Duplicates

Duplicate records can be stored in sorted or unsorted order. You can cause DB to
automatically sort your duplicate records by setting Dat abaseConfi g. set Sort edDupl i cat es()
to true. Note that this property must be set prior to database creation time and it cannot
be changed afterwards.

If sorted duplicates are supported, then the java. util. Conparat or implementation
identified to Dat abaseConfi g. set Dupl i cat eConpar at or () is used to determine the location
of the duplicate record in its duplicate set. If no such function is provided, then the
default lexicographical comparison is used.

Unsorted Duplicates

For performance reasons, BTrees should always contain sorted records. (BTrees containing
unsorted entries must potentially spend a great deal more time locating an entry than
does a BTree that contains sorted entries). That said, DB provides support for suppressing
automatic sorting of duplicate records because it may be that your application is inserting
records that are already in a sorted order.

That is, if the database is configured to support unsorted duplicates, then the assumption
is that your application will manually perform the sorting. In this event, expect to pay a
significant performance penalty. Any time you place records into the database in a sort
order not know to DB, you will pay a performance penalty

9/22/2004 Getting Started with DB Page 90

BTree Configuration

That said, this is how DB behaves when inserting records into a database that supports
non-sorted duplicates:

If your application simply adds a duplicate record using Dat abase. put (), then the
record is inserted at the end of its sorted duplicate set.

If a cursor is used to put the duplicate record to the database, then the new record
is placed in the duplicate set according to the actual method used to perform the put.
The relevant methods are:

Cursor. put After()

The data is placed into the database as a duplicate record. The key used for this
operation is the key used for the record to which the cursor currently refers. Any
key provided on the call is therefore ignored.

The duplicate record is inserted into the database immediately after the cursor's
current position in the database.

Cur sor. put Before()

Behaves the same as Cursor. put After () except that the new record is inserted
immediately before the cursor's current location in the database.

Cur sor. put KeyFi rst()

If the key already exists in the database, and the database is configured to use
duplicates without sorting, then the new record is inserted as the first entry in the
appropriate duplicates list.

Cur sor . put KeyLast ()

Behaves identically to Cur sor. put KeyFi rst () except that the new duplicate record
is inserted as the last record in the duplicates list.

Configuring a Database to Support Duplicates

Duplicates support can only be configured at database creation time. You do this by
specifying the appropriate Dat abaseConfi g method before the database is opened for the
first time.

The methods that you can use are:

Dat abaseConfi g. set Unsort edDupl i cat es()

The database supports non-sorted duplicate records.

Dat abaseConfi g. set Sort edDupl i cat es()

The database supports sorted duplicate records.

9/22/2004

Getting Started with DB Page 91

BTree Configuration

The following code fragment illustrates how to configure a database to support sorted
duplicate records:

package com sl eepycat . exanpl es. db. GettingStart ed;
inport java.io.FileNot FoundExcepti on;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Dat abaseType;

Dat abase nyDb = nul | ;

try {
/] Typical configuration settings

Dat abaseConfi g nyDbConfi g = new Dat abaseConfi g();
myDbConf i g. set Type(Dat abaseType. BTREE) ;
myDbConfig. set Al | owCreat e(true);

[/ Configure for sorted duplicates
myDbConf i g. set Sort edDupl i cates(true);

Il Qpen the database
myDb = new Dat abase("nydb. db", null, nyDbConfig);

} catch(Dat abaseException dbe) {
Systemerr.println("MDbs: " + dbe.toString());
Systemexit(-1);

} catch(FileNot FoundException fnfe) {
Systemerr.println("MDbs: " + fnfe.toString());
Systemexit(-1);

}

Setting Comparison Functions

By default, DB uses a lexicographical comparison function where shorter records collate
before longer records. For the majority of cases, this comparison works well and you do
not need to manage it in any way.

However, in some situations your application's performance can benefit from setting a
custom comparison routine. You can do this either for database keys, or for the data if
your database supports sorted duplicate records.

Some of the reasons why you may want to provide a custom sorting function are:

* Your database is keyed using strings and you want to provide some sort of
language-sensitive ordering to that data. Doing so can help increase the locality of
reference that allows your database to perform at its best.

9/22/2004 Getting Started with DB Page 92

BTree Configuration

* You are using a little-endian system (such as x86) and you are using integers as your
database's keys. Berkeley DB stores keys as byte strings and little-endian integers do
not sort well when viewed as byte strings. There are several solutions to this problem,
one being to provide a custom comparison function. See
http://www.sleepycat.com/docs/ref/am_misc/fag.html for more information.

* You you do not want the entire key to participate in the comparison, for whatever
reason. In this case, you may want to provide a custom comparison function so that
only the relevant bytes are examined.

Creating Java Comparators

You set a BTree's key comparator using Dat abaseConfi g. set Bt reeConpar at or () . You can
also set a BTree's duplicate data comparison function using
Dat abaseConfi g. set Dupl i cat eConparator ().

If the database already exists when it is opened, the comparator provided to these methods
must be the same as that historically used to create the database or corruption can occur.

You override the default comparison function by providing a Java Conpar at or class to the
database. The Java Conpar at or interface requires you to implement the

Conpar at or. conpar e() method (see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

DB hands your Conpar at or. conpar () method the byt e arrays that you stored in the
database. If you know how your data is organized in the byt e array, then you can write
a comparison routine that directly examines the contents of the arrays. Otherwise, you
have to reconstruct your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses

String. conpareTo(), which performs a Unicode comparison of two strings (note that for
single-byte roman characters, Unicode comparison and UTF-8 byte-by-byte comparisons
are identical - this is something you would only want to do if you were using multibyte
unicode characters with DB). In this case, your comparator would look like the following:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport java.util.Conparator;

public class MyDataConparator inplenents Conparator {
publ i ¢ MyDat aConparator() {}

public int conpare(Cbject dl, oject d2) {

byte[] bl = (byte[])dl;
byte[] b2 = (byte[])d2;
String sl = new String(bl);

9/22/2004 Getting Started with DB Page 93

http://www.sleepycat.com/docs/ref/am_misc/faq.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html

BTree Configuration

String s2 = new String(b2);
return sl.conpareTo(s2);

}

To use this comparator:

package com sl eepycat . exanpl es. db. GettingStarted;

i nport java.io.FileNot FoundExcepti on;
inport java.util.Conparator;

i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseExcepti on;

Dat abase nyDat abase = nul | ;

try {
/] Get the database configuration object
Dat abaseConfi g myDbConfi g = new Dat abaseConfig();
myDbConfig. set Al | owCreat e(true);

/1 Set the duplicate conparator class
MyDat aConpar at or nmdc = new MyDat aConpar at or () ;
myDbConf i g. set Dupl i cat eConpar at or (ntc) ;

/1 Qpen the database that you will use to store your data
myDbConf i g. set Sort edDupl i cat es(true);
nyDat abase = new Dat abase("nyDb", null, myDbConfig);
} catch (DatabaseException dbe) {
/1 Exception handling goes here
} catch (FileNot FoundException fnfe) {
/1 Exception handling goes here
1

9/22/2004 Getting Started with DB Page 94

	Getting Started with Berkeley DB
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction to Berkeley DB
	About This Manual
	Berkeley DB Concepts
	Access Methods
	Selecting Access Methods
	Choosing between BTree and Hash
	Choosing between Queue and Recno

	Database Limits and Portability
	Environments
	Exception Handling
	Error Returns
	Getting and Using DB

	Chapter 2. Databases
	Opening Databases
	Closing Databases
	Database Properties
	Administrative Methods
	Error Reporting Functions
	Managing Databases in Environments
	Database Example

	Chapter 3. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializeable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Database Usage Example

	Chapter 4. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 5. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbs
	Using Secondary Databases with ExampleDatabaseRead

	Chapter 6. Database Configuration
	Setting the Page Size
	Overflow Pages
	Locking
	IO Efficiency
	Page Sizing Advice

	Selecting the Cache Size
	BTree Configuration
	Allowing Duplicate Records
	Sorted Duplicates
	Unsorted Duplicates
	Configuring a Database to Support Duplicates

	Setting Comparison Functions
	Creating Java Comparators

