Berkeley DB For Java
Collections Tutorial

-

SLLLPU(HT@
(0ETWAR

Makers of Berkeley OB

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please write to <support @l eepycat . conp.

Published 9/22/2004

http://www.sleepycat.com/download/oslicense.html

Table of Contents

o =Tl iv
Conventions Used in this BOOKc.uviriiiiiiiiiiiiiiiii e e e iv

LIPS 1 e e [Tt [o Pt 1
FOATUIES ettt ettt et e e e 1
Developing a Sleepycat Collections Applicationccceeviiieeiiiiiiiiineeeenennnnnnes 2
Tutorial INErodUCTioNeii i i et e e e e enereneeeenaens 3

2. The BasiC Program ..uiiiiiiieiiiiiiiiieeieeiiieeeeeeeainaeeeeesssnnneseesessnsesessssnnnnnes 6
Defining Serialized Key and Value Classesiicvvveeeiiiriiineeeeerenineeeerenennnnes 6
Opening and Closing the Database ENvironmentcccceveiiieeeieneiinneneennnns 11
Opening and Closing the Class Catalogcceveiiiiiiiiiiiiiiiiieeeeeeeeiinneeeennns 13
Opening and Closing Databases ..cccceeeiiiieiiieeieieiiieeeeeeeiiieeeeeeennneeeeeanns 15
Creating Bindings and ColleCtionsciiiiiiiiiiiiiiiieeeiieeiiieeeeeeeennneeeenanns 17
Implementing the Main Programc.ceeiiiiieeeeiieiiieeeeereerineeeeeeennnneeeenns 20
USING TranSaCiONS tiviiuueeeeeeernueeeeeesennneeeeeesssnseseeesssnssessssssnnnsessesanns 23
Adding Database [temMS ..iiiiiiiiiiiiiiiiii ittt eeeiireeeeeeeeineeeeraaannaeeees 25
Retrieving Database [LemMS ..uiiiiiiiiiiiiiiiiiiiiiiiiiieeereeiieeeereeennanessannns 28
Handling EXCEPLIONS tuuuueiitiiiiiitttiiiiiieeeeeeeieeeeeeeesnseeeessesnnnnessesannnes 30

3. Using Secondary INAICES ...uueeiiiriiiieeteeiereieeeeeeeenneeeesesssnneesessssnnnsseeesennes 32
Opening Secondary Key INAICES .ivvuurriiiiiiiiiiiiiiiiiieeeteeiinneeeeesennaeeeeanns 32
More Secondary KeY INAICES ..uuviiiiiiiieiiiieiiieeeeeeiieeeeereerneeeesesannnneees 36
Creating Indexed ColleCtioNS ...uiiiiiiiieeeiiiriiieeeeeeiieeeeeeeenrnneeeesennnneneens 39
Retrieving 1tems by INAeX KEY ...vviiiiiiiiiiiiiiiiiiiiiiii ittt eeeeiiieeeeeeaannas 41

4, USING ENTItY ClasS@S weviiiiiiinuteteieriueeeerennneeeeeesenaeeseessnnnnseceessnnsnsecssnnes 45
Defining ENtity Classes ..uueiiiiiiiieteeieriiieeeeeeeiieeeeeeeeerneeeeesesnnnnnessenanns 45
Creating Entity Bindings ...ceiiiiiiieiiiiiiiiieeeeriiiieeeeeeeenrneeeeesennnneneesesanns 49
Creating Collections with Entity Bindingsccceiiiiiiiiiiiiiiiiiiiiiiiiiinneeennnn. 52
Using Entities with Collectionseviiiiiiiiiiiiiiiiiiiiii it eeeiieeeeeeanns 53

D USTNG TUPLES tiniiiiiiiiiiii e ieiiiieteeteeeirneeeeeeeenaeeeeessnnnseesssesnnnnssssesnnnnes 58
Using the Tuple FOrmMateiiiiiiiiiiiiiiiiiiiiiiieiiiiteeeeeenineeeeeesannnneecenanns 58
Using Tuples With KeY Creatorseeeeiiiiiiieeeeereiieeeeerenrineeeesesennnsessannns 59
Creating Tuple Key Bindings ...cccueeiiiiiiiiiiiiiiiiiiiteeiiiiieeeeeeeennnanessenanns 61
Creating Tuple-Serial Entity Bindingscivvviieiiiiiiiiiiiiiiiiiiiieeeeeeeninneeeenns 63
Using Sorted ColleCtioNS ...iiiiiiieeeeiiieiiieeeeeeerineeeeresennneeeesssnsnnsseeeaannns 66

6. Using Serializable ENtities ..ivvvieiiiiiiiiiiiiiiiiiiieeieeeiieeeeeeeninneeeesesennnneens 68
Using Transient Fields in an ENtity Classceeiiiiiieeiiiiiiiineeeeeneninneeceenns 68
Using Transient Fields in an Entity Bindingcccovviiiiiiiiiiiiiiiiiiiiiineeennnnns 72
Removing the Redundant Value Classesceeieeiiiereeeereiiineeeeeeennnneeeeeanns 74

7 SUMIMIAIY tttttiiiiineeeeeeeeaaeeeeeeesnnneseseessnnaseseessnnsasssssssnnnsssessssnnnansssesnnes 76
A. API Notes and Detailscveeiiiiieiiiiiiiiiiiiiieiierererereeeeeeerenaeerenneaanes 77
Using Data Bindings ..ccciveiiiiiiiiiittiieiiiiteeeeiaineeeeeeseerneeeessensnnssescasnns 77
Selecting Binding FOrMatsveeiiiiiiiieiiiiiiiiiteeeriiiieeeeeeeennneeeenanns 78

Record Number Bindings c.oceveeeiiiiiiiiiiiiiiiiiiiiieeeiiieeeeressnaneeeeeanns 79

Selecting Data Bindings ...cccveeiiiiiiiieiiiieiiieeeeeeeeiineeeeeesenneeceenanns 79
Implementing Bindingsccciiiiiieiiiiiiiiieeeerereieeeeeessnnneeeesesannnnes 80

USING BiNAINGS tuvveiiiiiiiiiiiiiiiiiiteeteeeiineeeeeeenrnneeeeessnnnseeeesesnnnnnes 80
Secondary Key Creators .uviiiiiiieeeeeeeeeiiueeeeeeerineseeeesennnneseesensnnseeens 80

9/22/2004 DB Collections Page ii

Using the Sleepycat Java Collections API

.. 81
USING TranSactionS ...cvieeneiiiriiirinteereeeninreeeeeannneesssessnnessssannanes 81
Transaction ROWDACKeeiiiiiiiiiiiiiiiiiiii it et eeeie e eees 82
Selecting AcCess METhOdSvveueiiiiiiiiiiiieiiieiiieiieeieeeeneeeanneanns 83
Access Method ReStriCtiONS ...vveiiiiiiieiiiiiiiiiiiiiiiiiiiieiieeiiieeeeeeannns 83

Using Stored ColleCtionScieeeiereiieiteerieteeiieeeeneeeenneeesneeeesneeesnnneenns 84
Stored Collection and Access Methodscccevviiiiiiiiiiiiiiiiiieiiiannnnns 84
Stored Collections Versus Standard Java Collectionsccccevvviiiiinnnn 85
Other Stored Collection Characteristicsciviiiiiiiiiiiiiiiiiiiiiiiinnnnn. 87
Why Java Collections for Berkeley DBccceeiiiieiieiniiriieeienieerennneennns 88

Serialized ObJeCt STOrage ..ocuviiiiiiiiiiiiiii it i eiiereieeeeneeeaaneeeannees 89

9/22/2004

DB Collections Page iii

Preface

Welcome to the Berkeley DB (DB) Collections API. This document provides a tutorial that
introduces the collections API. The goal of this document is to provide you with an efficient
mechanism with which you can quickly become efficient with this API. As such, this
document is intended for Java developers and senior software architects who are looking
for transactionally-protected backing of their Java collections. No prior experience with
Sleepycat technologies is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example: "The
Envi ronment . openDat abase() method returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your
DB_INSTALLATION_HOME directory.”

Program examples are displayed in a monospaced font on a shaded background. For
example:

i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnent Confi g;
inport java.io.File;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment myDbEnvi r onnent ;

In situations in this book, programming examples are updated from one chapter to the
next in this book. When this occurs, the new code is presented in nonospaced bol d font.
For example:

i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnent Confi g;
inport java.io.File;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment myDbEnv;

Envi ronment Confi g envConfig = new Environnment Config();

envConfig.set All owCreate(true);

myDbEnv = new Environnent (new Fil e("/export/dbEnv"), envConfig);

9/22/2004 DB Collections Page iv

Chapter 1. Introduction

The Sleepycat Java Collections APl is a Java framework that extends the well known Java
Collections [http://java.sun.com/j2se/1.3/docs/guide/collections/] design pattern such
that collections can now be stored, updated and queried in a transactional manner. The
Sleepycat Java Collections APl is a layer on top of DB.

Together the Sleepycat Java Collections APl and Berkeley DB provide an embedded data
management solution with all the benefits of a full transactional storage and the simplicity
of a well known Java API. Java programmers who need fast, scalable, transactional data
management for their projects can quickly adopt and deploy the Sleepycat Java Collections
API with confidence.

This framework was first known as Greybird DB [http://greybird-db.sourceforge.net/]
written by Mark Hayes. Sleepycat Software has collaborated with Mark to permanently
incorporate his excellent work into our distribution and support it as an ongoing part of
Berkeley DB and Berkeley DB Java Edition. The repository of source code that remains at
Sourceforge at version 0.9.0 is considered the last version before incorporation and will
remain intact but will not be updated to reflect changes made as part of Berkeley DB or
Berkeley DB Java Edition.

Features

Berkeley DB has always provided a Java APl which can be roughly described as a map and
cursor interface, where the keys and values are represented as byte arrays. This API is a
Java (JNI) interface to the C API and it closely modeled the Berkeley DB C API's interface.
The Sleepycat Java Collections API is a layer on top of that thin JNI mapping of the C API
to Berkeley DB. It adds significant new functionality in several ways.

« Animplementation of the Java Collections interfaces (Map, SortedMap, Set, SortedSet,
List and Iterator) is provided.

« Transactions are supported using the conventional Java transaction-per-thread model,
where the current transaction is implicitly associated with the current thread.

« Transaction runner utilities are provided that automatically perform transaction retry
and exception handling.

» Keys and values are represented as Java objects rather than byte arrays. Bindings are
used to map between Java objects and the stored byte arrays.

» The tuple data format is provided as the simplest data representation, and is useful
for keys as well as simple compact values.

« The serial data format is provided for storing arbitrary Java objects without writing
custom binding code. Java serialization is extended to store the class descriptions
separately, making the data records much more compact than with standard Java
serialization.

9/22/2004 DB Collections Page 1

http://java.sun.com/j2se/1.3/docs/guide/collections/
http://java.sun.com/j2se/1.3/docs/guide/collections/
http://greybird-db.sourceforge.net/

Developing a Sleepycat
Collections Application

» Custom data formats and bindings can be easily added. XML data format and XML
bindings could easily be created using this feature, for example.

» The Sleepycat Java Collections APl insulates the application from minor differences
in the use of the Berkeley DB Data Store, Concurrent Data Store, and Transactional
Data Store products. This allows for development with one and deployment with
another without significant changes to code.

Note that the Sleepycat Java Collections APl does not support caching of programming
language objects nor does it keep track of their stored status. This is in contrast to
"persistent object” approaches such as those defined by ODMG [http://www.odmg.org/]
and JDO (JSR 12). Such approaches have benefits but also require sophisticated object
caching. For simplicity the Sleepycat Java Collections API treats data objects by value,
not by reference, and does not perform object caching of any kind. Since the Sleepycat
Java Collections APl is a thin layer, its reliability and performance characteristics are
roughly equivalent to those of Berkeley DB, and database tuning is accomplished in the
same way as for any Berkeley DB database.

Developing a Sleepycat Collections Application

There are several important choices to make when developing an application using the
Sleepycat Java Collections API.

1. Choose the Berkeley DB Environment

Depending on your application’s concurrency and transactional requirements, you
may choose one of the three Berkeley DB Environments: Data Store, Concurrent Data
Store, or Transactional Data Store. For details on creating and configuring the
environment, see the Berkeley DB Programmer’s Reference Guide.

2. Choose the Berkeley DB Access Method

For each Berkeley DB datastore, you may choose from any of the four Berkeley DB
access methods — BTREE, HASH, RECNO, or QUEUE — and a number of other database
options. Your choice depends on several factors such as whether you need ordered
keys, unique keys, record number access, and so forth. For more information on
access methods, see the Berkeley DB Programmer's Reference Guide.

3. Choose the Format for Keys and Values

For each database you may choose a binding format for the keys and values. For
example, the tuple format is useful for keys because it has a deterministic sort order.
The serial format is useful for values if you want to store arbitrary Java objects. In
some cases a custom format may be appropriate. For details on choosing a binding
format see Using Data Bindings (page 77).

4. Choose the Binding for Keys and Values

With the serial data format you do not have to create a binding for each Java class
that is stored since Java serialization is used. But for other formats a binding must

9/22/2004 DB Collections Page 2

http://www.odmg.org/

Tutorial Introduction

be defined that translates between stored byte arrays and Java objects. For details
see Using Data Bindings (page 77).

5. Choose Secondary Indices

Any database that has unique keys may have any number of secondary indices. A
secondary index has keys that are derived from data values in the primary database.
This allows lookup and iteration of objects in the database by its index keys. For each
index you must define how the index keys are derived from the data values using a
Secondar yKeyCr eat or . For details see the Secondar yDat abase, Secondar yConfi g and
Secondar yKeyCr eat or classes.

6. Choose the Collection Interface for each Database

The standard Java Collection interfaces are used for accessing databases and secondary
indices. The Map and Set interfaces may be used for any type of database. The Iterator
interface is used through the Set interfaces. For more information on the collection
interfaces see Using Stored Collections (page 84).

Any number of bindings and collections may be created for the same database. This allows
multiple views of the same stored data. For example, a data store may be viewed as a
Map of keys to values, a Set of keys, or a Collection of values. String values, for example,
may be used with the built-in binding to the String class, or with a custom binding to
another class that represents the string values differently.

It is sometimes desirable to use a Java class that encapsulates both a data key and a data
value. For example, a Part object might contain both the part number (key) and the part
name (value). Using the Sleepycat Java Collections API this type of object is called an
"entity”. An entity binding is used to translate between the Java object and the stored
data key and value. Entity bindings may be used with all Collection types.

Please be aware that the provided Sleepycat Java Collections API collection classes do
not conform completely to the interface contracts defined in the j ava. uti| package. For
example, all iterators must be explicitly closed and the si ze() method is not available.
The differences between the Sleepycat Java Collections API collections and the standard
Java collections are documented in Stored Collections Versus Standard Java Collections
(page 85).

Tutorial Introduction

Most of the remainder of this document illustrates the use of the Sleepycat Java Collections
API by presenting a tutorial that describes usage of the API. This tutorial builds a shipment
database, a familiar example from classic database texts.

The examples illustrate the following concepts of the Sleepycat Java Collections API:
o Object-to-data bindings

e The database environment

9/22/2004 DB Collections Page 3

Tutorial Introduction

» Databases that contain key/value records

» Secondary index databases that contain index keys

« Java collections for accessing databases and indices

» Transactions used to commit or undo database changes

The examples build on each other, but at the same time the source code for each example
stands alone.

e The Basic Program (page 6)
» Using Secondary Indices (page 32)

o Using Entity Classes (page 45)

Using Tuples (page 58)
» Using Serializable Entities (page 68)

The shipment database consists of three database stores: the part store, the supplier
store, and the shipment store. Each store contains a number of records, and each record
consists of a key and a value.

Store Key Value
Part Part Number Name, Color, Weight, City
Supplier Supplier Number Name, Status, City
Shipment Part Number, Supplier Quantity

Number

In the example programs, Java classes containing the fields above are defined for the key
and value of each store: Part Key, Part Dat a, Suppl i er Key, Suppl i er Dat a, Shi pnent Key and
Shi prent Dat a. In addition, because the Part's Weight field is itself composed of two fields
— the weight value and the unit of measure — it is represented by a separate Wi ght class.
These classes will be defined in the first example program.

In general the Sleepycat Java Collections API uses bindings to describe how Java objects
are stored. A binding defines the stored data syntax and the mapping between a Java
object and the stored data. The example programs show how to create different types
of bindings, and explains the characteristics of each type.

The following tables show the record values that are used in all the example programs in
the tutorial.

9/22/2004 DB Collections Page 4

Tutorial Introduction

Number Name Color Weight City

P1 Nut Red 12.0 grams London
P2 Bolt Green 17.0 grams Paris
P3 Screw Blue 17.0 grams Rome
P4 Screw Red 14.0 grams London
P5 Cam Blue 12.0 grams Paris
P6 Cog Red 19.0 grams London
Number Name Status City

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens
Part Number Supplier Number Quantity

P1 S1 300

P1 S2 300

P2 S1 200

P2 S2 400

P2 S3 200

P2 S4 200

P3 S1 400

P4 S1 200

P4 S4 300

P5 S1 100

P5 S4 400

P6 S1 100

9/22/2004 DB Collections Page 5

Chapter 2. The Basic Program

The Basic example is a minimal implementation of the shipment program. It writes and
reads the part, supplier and shipment databases.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Serialized Key and Value Classes

The key and value classes for each type of shipment record — Parts, Suppliers and
Shipments — are defined as ordinary Java classes. In this example the serialized form of
the key and value objects is stored directly in the database. Therefore these classes must
implement the standard Java java.io.Serializable interface. A compact form of Java
serialization is used that does not duplicate the class description in each record. Instead
the class descriptions are stored in the class catalog store, which is described in the next
section. But in all other respects, standard Java serialization is used.

An important point is that instances of these classes are passed and returned by value,
not by reference, when they are stored and retrieved from the database. This means that
changing a key or value object does not automatically change the database. The object
must be explicitly stored in the database after changing it. To emphasize this point the
key and value classes defined here have no field setter methods. Setter methods can be
defined, but it is important to remember that calling a setter method will not cause the
change to be stored in the database. How to store and retrieve objects in the database
will be described later.

Each key and value class contains a toString method that is used to output the contents
of the object in the example program. This is meant for illustration only and is not required
for database objects in general.

Notice that the key and value classes defined below do not contain any references to
com sl eepycat packages. An important characteristic of these classes is that they are
independent of the database. Therefore, they may be easily used in other contexts and
may be defined in a way that is compatible with other tools and libraries.

The Part Key class contains only the Part's Number field.

Note that Part Key (as well as Suppl i er Key below) contain only a single String field. Instead
of defining a specific class for each type of key, the String class by itself could have been
used. Specific key classes were used to illustrate strong typing and for consistency in the
example. The use of a plain String as an index key is illustrated in the next example
program. It is up to the developer to use either primitive Java classes such as String and
Integer, or strongly typed classes. When there is the possibility that fields will be added
later to a key or value, a specific class should be used.

9/22/2004 DB Collections Page 6

Defining Serialized Key and Value
Classes

inport java.io.Serializable;

public class PartKey inplenments Serializable

{
private String nunber;
publ i c PartKey(String nunber) {
this. nunber = nunber;
}
public final String getNunber() {
return nunber;
}
public String toString() {
return "[PartKey: nunmber=" + nunber + ']";
}
}

The Part Dat a class contains the Part's Name, Color, Weight and City fields.

inport java.io.Serializable;

public class PartData inplenents Serializable
{

private String nane;

private String color;

private Wi ght weight;

private String city;

public PartData(String name, String color, Weight weight, String city)

{
this.name = nane;
this.color = color;
this.wei ght = weight;
this.city = city;
}
public final String getNanme()
{
return nang;
}
public final String getColor()
{
return color;
}

public final Weight getWeight()

9/22/2004 DB Collections Page 7

Defining Serialized Key and Value
Classes

}

{
}

public final String getCity()
{

return weight;

return city;
}
public String toString()
{
return "[PartData: name=" + nane +
" color=" + color +
" weight=" + weight +
"city=" +city +']";
}

The Wi ght class is also defined here, and is used as the type of the Part's Weight field.
Just as in standard Java serialization, nothing special is needed to store nested objects
as long as they are all Serializable.

inport java.io.Serializable;

public class Wight inplements Serializable

{
public final static String GRAMS = "grams";
public final static String OUNCES = "ounces";
private doubl e amount;
private String units;
publ i ¢ Wi ght (doubl e amount, String units)
{
this.amount = anount;
this.units = units;
}
public final double getAnpunt()
{
return anount;
}
public final String getUnits()
{
return units;
}
public String toString()
9/22/2004 DB Collections Page 8

Defining Serialized Key and Value
Classes

[

return "[" + anount + +units +']";

}

The Suppl i er Key class contains the Supplier's Number field.

inport java.io.Serializable;

public class SupplierKey inplenents Serializable

{
private String nunber;
publ i ¢ SupplierKey(String nunber)
{
thi s. nunber = nunber;
}
public final String getNunber()
{
return nunber;
}
public String toString()
{
return "[SupplierKey: nunber=" + number + ']';
}
}

The Suppl i er Dat a class contains the Supplier's Name, Status and City fields.

inport java.io.Serializable;

public class SupplierData inplements Serializable

{

private String nane;
private int status;
private String city;

public SupplierData(String name, int status, String city)

{
this. nane = nane;
this.status = status;
this.city = city;
}
public final String getName()
{
return name;
}

9/22/2004 DB Collections Page 9

Defining Serialized Key and Value
Classes

public final int getStatus()

{
return status;
}
public final String getCity()
{
return city;
}
public String toString()
{
return "[SupplierData: name=" + name +
" status=" + status +
"city=" +city +']";
}

The Shi pnent Key class contains the keys of both the Part and Supplier.

inport java.io.Serializable;

public class ShipnentKey inplenents Serializable

{
private String partNunber;
private String supplierNunber;
publ i ¢ Shi pnent Key(String partNurmber, String supplierNunber)
{
this. part Nunber = part Nunber;
this.supplierNunber = supplierNunber;
}
public final String getPartNumber ()
{
return partNumber;
}
public final String getSupplierNunber()
{
return supplierNunber;
}
public String toString()
{
return "[Shi pment Key: supplier=" + supplierNunber +
" part=" + partNumber + ']';
9/22/2004 DB Collections Page 10

Opening and Closing the
Database Environment

}

The Shi pnent Dat a class contains only the Shipment's Quantity field. Like Part Key and
Suppl i er Key, Shi pment Dat a contains only a single primitive field. Therefore the Integer
class could have been used instead of defining a specific value class.

inport java.io.Serializable;

public class ShipnentData inplements Serializable

{
private int quantity;
publ i ¢ Shi prment Data(int quantity)
{
this.quantity = quantity;
}
public final int getQuantity()
{
return quantity;
}
public String toString()
{
return "[ShipmentData: quantity=" + quantity + ']";
}
}

Opening and Closing the Database Environment

This section of the tutorial describes how to open and close the database environment.
The database environment manages resources (for example, memory, locks and
transactions) for any number of databases. A single environment instance is normally used
for all databases.

The Sanpl eDat abase class is used to open and close the environment. It will also be used
in following sections to open and close the class catalog and other databases. Its
constructor is used to open the environment and its cl ose() method is used to close the
environment. The skeleton for the Sanpl eDat abase class follows.

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronnent ;

i nport com sl eepycat . db. Envi ronnent Confi g;
inport java.io.File;

inport java.io.FileNot FoundExcepti on;

public class Sanpl eDat abase
{

private Environnent env;

9/22/2004 DB Collections Page 11

Opening and Closing the
Database Environment

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNotFoundException
{

}

public void close()
t hrows Dat abaseException

{
}
}

The first thing to notice is that the Environment class is in the com.sleepycat.db package,
not the com.sleepycat.collections package. The com.sleepycat.db package contains all
core Berkeley DB functionality. The com.sleepycat.collections package contains extended
functionality that is based on the Java Collections API. The collections package is layered
on top of the com.sleepycat.db package. Both packages are needed to create a complete
application based on the Sleepycat Java Collections API.

The following statements create an Envi ronment object.

public Sanpl eDat abase(String homeDirectory)
throws Dat abaseException, FileNot FoundException
{

System out. println("Opening environnent in: " + homeDirectory);

Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Transactional (true);

envConfig. set All owCreate(true);
envConfig.setlnitializeCache(true);
envConfig.setlnitializelLocking(true);

env = new Environnent (new Fil e(honmeDirectory), envConfig);

}

The Envi ronnment Confi g class is used to specify environment configuration parameters.
The first configuration option specified — set Transacti onal () — is set to true to create
an environment where transactional (and non-transactional) databases may be opened.
While non-transactional environments can also be created, the examples in this tutorial
use a transactional environment.

set Al | owCreat e() is set to true to specify that the environment's files will be created if
they don't already exist. If this parameter is not specified, an exception will be thrown
if the environment does not already exist. A similar parameter will be used later to cause
databases to be created if they don't exist.

When an Envi ronment object is constructed, a home directory and the environment
configuration object are specified. The home directory is the location of the environment's
log files that store all database information.

9/22/2004 DB Collections Page 12

Opening and Closing the Class
Catalog

The following statement closes the environment. The environment should always be closed
when database work is completed to free allocated resources and to avoid having to run
recovery later. Closing the environment does not automatically close databases, so
databases should be closed explicitly before closing the environment.

public void close()
t hrows Dat abaseException

{
}

The following getter method returns the environment for use by other classes in the
example program. The environment is used for opening databases and running transactions.

env. cl ose();

public class Sanpl eDat abase

{
publ ic final Environment getEnvironnent()
{ return env;
}

\ e

Opening and Closing the Class Catalog

This section describes how to open and close the Java class catalog. The class catalog is
a specialized database store that contains the Java class descriptions of the serialized

objects that are stored in the database. The class descriptions are stored in the catalog
rather than storing them redundantly in each database record. A single class catalog per
environment must be opened whenever serialized objects will be stored in the database.

The Sanpl eDat abase class is extended to open and close the class catalog. The following
additional imports and class members are needed.

i nport com sl eepycat. bi nd. serial . Storedd assCat al og;
i nport com sl eepycat . db. Dat abase;

i nport com sl eepycat . db. Dat abaseConfi g;

i nport com sl eepycat . db. Dat abaseType;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Envi ronment ;

i nport com sl eepycat . db. Envi ronnent Confi g;

inport java.io.File;

i nport java.io.FileNot FoundExcepti on;

public class Sanpl eDat abase
{

private Environnent env;

9/22/2004 DB Collections Page 13

Opening and Closing the Class
Catalog

private static final String CLASS CATALOG = "java_cl ass_catal og";

private Storedd assCatal og javaCatal og;

}

While the class catalog is itself a database, it contains metadata for other databases and
is therefore treated specially by the Sleepycat Java Collections API. The

St or edC assCat al og class encapsulates the catalog store and implements this special
behavior.

The following statements open the class catalog by creating a Dat abase and a
St oredd assCat al og object. The catalog database is created if it doesn't already exist.

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNot FoundException

{

Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Transacti onal (true);

dbConfi g.set Al l owCreat e(true);

dbConfi g. set Type(Dat abaseType. BTREE) ;

Dat abase catal ogDb = env. openDat abase(nul I, CLASS CATALOG nul I,
dbConfi g);

javaCatal og = new Storedd assCat al og(cat al ogDb) ;

}

public final StoredC assCatal og getC assCatal og() {
return javaCatal og;

}

The Dat abaseConfi g class is used to specify configuration parameters when opening a
database. The first configuration option specified — set Transacti onal () — is set to true
to create a transactional database. While non-transactional databases can also be created,
the examples in this tutorial use transactional databases.

set Al l owCr eat e() is set to true to specify that the database will be created if it doesn't
already exist. If this parameter is not specified, an exception will be thrown if the database
does not already exist.

set Dat abaseType() identifies the database storage type or access method. For opening
a catalog database, the BTREE type is required. BTREE is the most commonly used database
type and in this tutorial is used for all databases.

The first parameter of the openDat abase() method is an optional transaction that is used
for creating a new database. If null is passed, auto-commit is used when creating a
database.

9/22/2004 DB Collections Page 14

Opening and Closing Databases

The second and third parameters of openDat abase() specify the filename and database
(sub-file) name o fthe database. The database name is optional and is nul | in this example.

The last parameter of openDat abase() specifies the database configuration object.

Lastly, the Storedd assCat al og object is created to manage the information in the class
catalog database. The Storedd assCat al og object will be used in the sections following
for creating serial bindings.

The get O assCat al og method returns the catalog object for use by other classes in the
example program.

When the environment is closed, the class catalog is closed also.

public void close()

t hrows Dat abaseException
{

j avaCat al og. cl ose();

env. cl ose();

}

The St oredd assCat al 0g. cl ose() method simply closes the underlying class catalog
database and in fact the Dat abase. cl ose() method may be called instead, if desired. The
catalog database, and all other databases, must be closed before closing the environment.

Opening and Closing Databases

This section describes how to open and close the Part, Supplier and Shipment databases.
A database is a collection of records, each of which has a key and a value. The keys and
values are stored in a selected format, which defines the syntax of the stored data. Two
examples of formats are Java serialization format and tuple format. In a given database,
all keys have the same format and all values have the same format.

The Sanpl eDat abase class is extended to open and close the three databases. The following
additional class members are needed.

public class Sanpl eDat abase

{
private static final String SUPPLI ER STORE = "supplier_store";
private static final String PART STORE = "part _store";
private static final String SH PMENT STORE = "shi pnent _store";
private Database supplier Db;
private Database part Db;
private Database shi pnent Db;

}

For each database there is a database name constant and a Dat abase object.

9/22/2004 DB Collections Page 15

Opening and Closing Databases

The following statements open the three databases by constructing a Database object.

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNotFoundException

{

Dat abaseConfi g dbConfig = new Dat abaseConfig();

dbConfi g. set Transacti onal (true);

dbConfi g.set Al | owCreat e(true);

dbConfi g. set Type(Dat abaseType. BTREE) ;

partDb = env.openDat abase(nul |, PART_STORE, null, dbConfig);

suppl i erDb = env. openDat abase(nul |, SUPPLIER STORE, null, dbConfig);

shi pnent Db = env. openDat abase(nul |, SH PVMENT_STORE, null, dbConfig);
}

The database configuration object that was used previously for opening the catalog
database is reused for opening the three databases above. The databases are created if
they don't already exist. The parameters of the openDat abase() method were described
earlier when the class catalog database was opened.

The following statements close the three databases.

public void close()
t hrows Dat abaseException

{
part Db. cl ose();
suppl i er Db. cl ose();
shi pnent Db. cl ose();
j avaCat al og. cl ose();
env. cl ose();

}

All databases, including the catalog database, must be closed before closing the
environment.

The following getter methods return the databases for use by other classes in the example

program.
public class Sanpl eDat abase
{
public final Database getPartDatabase()
{
return part Db;
}

public final Database get Suppli erDatabase()

9/22/2004 DB Collections Page 16

Creating Bindings and Collections

{
return suppli erDb;
}
public final Database get Shi pment Dat abase()
{
return shi pment Db;

}
_—
Creating Bindings and Collections

Bindings translate between stored records and Java objects. In this example, Java
serialization bindings are used. Serial bindings are the simplest type of bindings because
no mapping of fields or type conversion is needed. Tuple bindings — which are more
difficult to create than serial bindings but have some advantages — will be introduced
later in the Tuple example program.

Standard Java collections are used to access records in a database. Stored collections use
bindings transparently to convert the records to objects when they are retrieved from
the collection, and to convert the objects to records when they are stored in the collection.

An important characteristic of stored collections is that they do not perform object
caching. Every time an object is accessed via a collection it will be added to or retrieved
from the database, and the bindings will be invoked to convert the data. Objects are
therefore always passed and returned by value, not by reference. Because Berkeley DB
is an embedded database, efficient caching of stored raw record data is performed by
the database library.

The Sanpl eVi ews class is used to create the bindings and collections. This class is separate
from the Sanpl eDat abase class to illustrate the idea that a single set of stored data can
be accessed via multiple bindings and collections, or views. The skeleton for the

Sanpl eVi ews class follows.

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat. bi nd. seri al . O assCat al og;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat. col | ections. StoredEntrySet;
i nport com sl eepycat. col | ections. St oredMap;

public class SanpleVi ews

{
private StoredMap part Map;

private StoredMap suppli er Map;
private StoredMap shi pment Map;

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)

9/22/2004 DB Collections Page 17

Creating Bindings and Collections

}

A St or edMap field is used for each database. The StoredMap class implements the standard
Java Map interface, which has methods for obtaining a Set of keys, a Col | ecti on of values,
or a Set of Map. Entry key/value pairs. Because databases contain key/value pairs, any
Berkeley DB database may be represented as a Java map.

The following statements create the key and data bindings using the Seri al Bi ndi ng class.
publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)

{
Cl assCatal og catal og = db. get d assCatal og();
Ent ryBi ndi ng partKeyBi nding =
new Seri al Bi ndi ng(catal og, PartKey.class);
Ent ryBi ndi ng part Val ueBi ndi ng =
new Seri al Bi ndi ng(catal og, PartData.class);
Ent ryBi ndi ng suppli erKeyBi nding =
new Seri al Bi ndi ng(catal og, Suppli erKey.class);
Ent ryBi ndi ng suppl i erVal ueBinding =
new Seri al Bi ndi ng(catal og, SupplierData.class);
Ent ryBi ndi ng shi pment KeyBi nding =
new Seri al Bi ndi ng(catal og, Shi pnentKey. cl ass);
Ent ryBi ndi ng shi pment Val ueBi ndi ng =
new Seri al Bi ndi ng(catal og, Shi pnent Dat a. cl ass);
}

The first parameter of the Seri al Bi ndi ng constructor is the class catalog, and is used to
store the class descriptions of the serialized objects.

The second parameter is the base class for the serialized objects and is used for type
checking of the stored objects. If nul | or Obj ect. cl ass is specified, then any Java class
is allowed. Otherwise, all objects stored in that format must be instances of the specified
class or derived from the specified class. In the example, specific classes are used to
enable strong type checking.

The following statements create standard Java maps using the St or edMap class.

publ i c Sanpl eVi ews(Sanpl eDat abase db)
{
partMap =
new StoredMap(db. get Part Dat abase(),
part KeyBi ndi ng, partVal ueBi ndi ng, true);
suppl i erMap =
new StoredMap(db. get Suppl i er Dat abase(),

suppl i er KeyBi ndi ng, suppli erVal ueBi ndi ng, true);
shi pnent Map =

9/22/2004 DB Collections Page 18

Creating Bindings and Collections

new St or edMap(db. get Shi pnent Dat abase(),

shi pnent KeyBi ndi ng, shi pnent Val ueBi ndi ng, true);

The first parameter of the St or edMap constructor is the database. In a StoredMap, the
database keys (the primary keys) are used as the map keys. The Index example shows
how to use secondary index keys as map keys.

The second and third parameters are the key and value bindings to use when storing and
retrieving objects via the map.

The fourth and last parameter specifies whether changes will be allowed via the collection.
If false is passed, the collection will be read-only.

The following getter methods return the stored maps for use by other classes in the
example program. Convenience methods for returning entry sets are also included.

public class SanpleVi ews

{
public final StoredVap getPartMap()
{
return partMp;
}
public final StoredMap get SupplierMp()
{
return supplierMap;
}
public final StoredMap get Shi pnent Map()
{
return shi pnent Map;
}
public final StoredEntrySet getPartEntrySet()
{
return (StoredEntrySet) partMp.entrySet();
}
public final StoredEntrySet getSupplierEntrySet()
{
return (StoredEntrySet) supplierMp.entrySet();
}
public final StoredEntrySet get ShipmentEntrySet ()
{
return (StoredEntrySet) shipnment Map. entrySet();
}
9/22/2004 DB Collections Page 19

Implementing the Main Program

}

Note that StoredMap and StoredEntrySet are returned rather than just returning Map and
Set. Since StoredMap implements the Map interface and StoredEntrySet implements the
Set interface, you may ask why Map and Set were not returned directly.

St or edMap, St oredEnt rySet, and other stored collection classes have a small number of
extra methods beyond those in the Java collection interfaces. The stored collection types
are therefore returned to avoid casting when using the extended methods. Normally,
however, only a Map or Set is needed, and may be used as follows.

Sanpl eDat abase sd = new Sanpl eDat abase(new String("/home"));
Sanpl eVi ews vi ews = new Sanpl eVi ews(sd);

Map partMap = views. get Part Map();

Set supplierEntries = views.getSupplierEntrySet();

Implementing the Main Program

The main program opens the environment and databases, stores and retrieves objects
within a transaction, and finally closes the environment databases. This section describes
the main program shell, and the next section describes how to run transactions for storing
and retrieving objects.

The Sanpl e class contains the main program. The skeleton for the Sanpl e class follows.

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport java.io.FileNot FoundExcepti on;

public class Sanple

{
private Sanpl eDat abase db;

private SampleViews views;

public static void main(String args)
{
}

private Sample(String honeDir)
throws Dat abaseException, FileNot FoundException
{

}

private void close()
throws Dat abaseException
{

}

private void run()
throws Exception

9/22/2004 DB Collections Page 20

Implementing the Main Program

}

The main program uses the Sanpl eDat abase and Sanpl eVi ews classes that were described
in the preceding sections. The mai n method will create an instance of the Sanpl e class,
and call its run() and cl ose() methods.

The following statements parse the program's command line arguments.

public static void main(String[] args)

{
Systemout. println("\nRunning sanple: " + Sanple.class);
String homeDir = "./tnp";
for (int i =0; i <args.length; i += 1)
{
String arg = args[i];
if (args[i].equals("-h") & i < args.length - 1)
{
i += 1
honeDir = args[i];
}
el se
{
Systemerr.println("Usage:\n java " +
Sanpl e. cl ass. get Name() +
"\n [-h <home-directory>]");
Systemexit(2);
}
}
}

The usage command is:

java com sl eepycat . exanpl es. bdb. shi pnent . basi c. Sanpl e
[-h <home-directory>]

The - h command is used to set the honeDi r variable, which will later be passed to the
Sanpl eDat abase() constructor. Normally all Berkeley DB programs should provide a way
to configure their database environment home directory.

The default for the home directory is . / t np — the tmp subdirectory of the current directory
where the sample is run. The home directory must exist before running the sample. To
re-create the sample database from scratch, delete all files in the home directory before
running the sample.

The home directory was described previously in Opening and Closing the Database
Environment (page 11).

9/22/2004 DB Collections Page 21

Implementing the Main Program

Of course, the command line arguments shown are only examples and a real-life application
may use different techniques for configuring these options.

The following statements create an instance of the Sanpl e class and call its run() and
cl ose() methods.

public static void main(String args)

{
Sanpl e sanple = null;
try
{
sanpl e = new Sanpl e(homeDir);
sanpl e.run();
catch (Exception e)
{ e.print StackTrace();
}
finally
{
if (sample !'= null)
{
try
{
sanpl e. cl ose();
E;atch (Exception e)
{ Systemerr.println("Exception during database close:");
e.printStackTrace();
}
}
}
}

The Sanpl e() constructor will open the environment and databases, and the run() method
will run transactions for storing and retrieving objects. If either of these throws an
exception, then the program was unable to run and should normally terminate. (Transaction
retries are handled at a lower level and will be described later.) The first cat ch statement
handles such exceptions.

Thefinal |y statement is used to call the cl ose() method since an attempt should always
be made to close the environment and databases cleanly. If an exception is thrown during
close and a prior exception occurred above, then the exception during close is likely a
side effect of the prior exception.

The Sanpl e() constructor creates the Sanpl eDat abase and Sanpl eVi ews objects.

9/22/2004 DB Collections Page 22

Using Transactions

private Sampl e(String honeDir)
throws Dat abaseException, FileNot FoundException

{
db = new Sanpl eDat abase(honeDir);

views = new Sanpl eVi ews(db);

}

Recall that creating the Sanpl eDat abase object will open the environment and all
databases.

To close the database the Sanpl e. cl ose() method simply calls Sanpl eDat abase. cl ose() .

private void close()
t hrows Dat abaseException
{

}

The run() method is described in the next section.

db. cl ose();

Using Transactions

DB transactional applications have standard transactional characteristics: recoverability,
atomicity and integrity (this is sometimes also referred to generically as ACID properties).
The Sleepycat Java Collections APl provides these transactional capabilities using a
transaction-per-thread model. Once a transaction is begun, it is implicitly associated
with the current thread until it is committed or aborted. This model is used for the
following reasons.

» The transaction-per-thread model is commonly used in other Java APIs such as J2EE.

« Since the Java collections API is used for data access, there is no way to pass a
transaction object to methods such as Map. put .

The Sleepycat Java Collections API provides two transaction APIs. The lower-level API is
the Current Transact i on class. It provides a way to get the transaction for the current
thread, and to begin, commit and abort transactions. It also provides access to the Berkeley
DB core API Transact i on object. With Current Transact i on, just as in the com.sleepycat.db
API, the application is responsible for beginning, committing and aborting transactions,
and for handling deadlock exceptions and retrying operations. This APl may be needed
for some applications, but it is not used in the example.

The example uses the higher-level Transact i onRunner and Transact i onWor ker APIs, which
are build on top of Current Transacti on. Transacti onRunner. run() automatically begins
a transaction and then calls the Transacti onWr ker . doWr k() method, which is
implemented by the application.

The Transact i onRunner. run() method automatically detects deadlock exceptions and
performs retries by repeatedly calling the Transact i onWr ker . doWr k() method until the
operation succeeds or the maximum retry count is reached. If the maximum retry count

9/22/2004 DB Collections Page 23

Using Transactions

is reached or if another exception (other than Deadl ockExcepti on) is thrown by
Transacti on\Wr ker. doWrk(), then the transaction will be automatically aborted.
Otherwise, the transaction will be automatically committed.

Using this high-level API, if Transacti onRunner. run() throws an exception, the application
can assume that the operation failed and the transaction was aborted; otherwise, when
an exception is not thrown, the application can assume the operation succeeded and the
transaction was committed.

The Sanpl e. run() method creates a Transact i onRunner object and calls its run() method.

i nport com sl eepycat. col | ections. Transacti onRunner;
i nport com sl eepycat. col | ections. Transacti on\r ker ;

public class Sanple

{
private Sanpl eDat abase db;
private void run()
throws Exception
{
Transacti onRunner runner = new Transacti onRunner (db. get Environment ());
runner. run(new Popul at eDat abase());
runner. run(new Print Dat abase());
}
private class Popul at eDat abase inpl enents Transacti on\r ker
{
public void doWrk()
throws Exception
{
}
}
private class PrintDatabase inplenments Transacti onWrker
{
public void doWrk()
throws Exception
{
}
}
}

The run() method is called by mai n() and was outlined in the previous section. It first
creates a Transact i onRunner, passing the database environment to its constructor.

It then calls Transact i onRunner.run() to execute two transactions, passing instances of
the application-defined Popul at eDat abase and Pri nt Dat abase nested classes. These classes
implement the Transact i onWr ker . doWr k() method and will be fully described in the
next two sections.

9/22/2004 DB Collections Page 24

Adding Database Items

For each call to Transact i onRunner. run(), a separate transaction will be performed. The
use of two transactions in the example — one for populating the database and another
for printing its contents — is arbitrary. A real-life application should be designed to create
transactions for each group of operations that should have ACID properties, while also
taking into account the impact of transactions on performance.

The advantage of using Transact i onRunner is that deadlock retries and transaction begin,
commit and abort are handled automatically. However, a Transact i on\r ker class must
be implemented for each type of transaction. If desired, anonymous inner classes can be
used to implement the Transacti onWr ker interface.

Adding Database Items

Adding (as well as updating, removing, and deleting) information in the database is
accomplished via the standard Java collections API. In the example, the Map. put method
is used to add objects. All standard Java methods for modifying a collection may be used
with the Sleepycat Java Collections API.

The Popul at eDat abase. doWr k() method calls private methods for adding objects to each
of the three database stores. It is called via the Transact i onRunner class and was outlined
in the previous section.

i nport java.util.Mp;
i nport com sl eepycat. col | ections. Transact i on\r ker ;

public class Sanple

{
private SanpleViews views;

private class Popul at eDat abase inpl enents Transact i on\r ker

{

public void doWrk()
throws Exception

{
addSuppliers();
addParts();
addShi pnent s() ;

}

private void addSuppliers()

{
}

private void addParts()

{
}

9/22/2004 DB Collections Page 25

Adding Database Items

private void addShi pments()

{
}
}

The addSuppl i ers(), addPart s() and addshi pnent s() methods add objects to the Suppliers,
Parts and Shipments stores. The Map for each store is obtained from the Sanpl eVi ews
object.

private void addSuppliers()
{
Map suppliers = views. get SupplierMp();
if (suppliers.isEnpty())
{
System out. println("Addi ng Suppliers");
suppl i ers. put (new Suppl i erKey("S1"),
new SupplierData("Smith", 20, "London"));
suppl i ers. put (new Suppl i erKey("S2"),
new SupplierData("Jones", 10, "Paris"));
suppl i ers. put (new Suppl i erKey("S3"),
new Suppl i er Dat a(" Bl ake", 30, "Paris"));
suppl i ers. put (new Suppl i erKey("$4"),
new SupplierData("d ark", 20, "London"));
suppl i ers. put (new Suppl i erKey("S5"),
new Suppl i er Dat a(" Adans", 30, "Athens"));

}

private void addParts()

{
Map parts = views. get Part Map();
if (parts.isEmty())

{
Systemout. println("Adding Parts");

parts. put (new PartKey("P1"),
new PartData("Nut", "Red",
new Wi ght (12. 0, Wi ght. GRAMS),
"London"));
parts. put (new PartKey("P2"),
new PartData("Bolt", "Geen",
new Wi ght (17.0, Wi ght. GRAMS),
"Paris"));
parts. put (new PartKey("P3"),
new PartData("Screw', "Blue",
new Wi ght (17.0, Wi ght. GRAMS),
"Rore"))
parts. put (new PartKey("P4"),
new PartData("Screw', "Red",

9/22/2004 DB Collections Page 26

Adding Database Items

new Vi ght (14.0, Wi ght. GRAMS),

"London"));

parts. put (new PartKey("P5"),

new PartData("Cani', "Bl ue",
new Vi ght (12. 0, Wi ght. GRAMS),

"Paris"));

parts. put (new PartKey("P6"),

}

new PartData("Cog", "Red",

new Vi ght (19.0, Wi ght. GRAMS),

"London"));

private void addShi pnents()

{
Map shi pnent s
i f (shipnents.

{

= vi ews. get Shi pnent Map() ;
i sEmpty())

System out. println("Addi ng Shipments");

shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.
shi pnent s.

shi pnent s.

}

put (new Shi pment Key("P1",
put (new Shi pment Key("P2",
put (new Shi pment Key("P3",
put (new Shi pment Key (" P4",
put (new Shi pment Key("P5",
put (new Shi pment Key (" P6",
put (new Shi pment Key("P1",
put (new Shi pment Key (" P2",
put (new Shi pment Key (" P2",

put (new Shi pment Key (" P2",

new Shi pnent Dat a(200)) ;

put (new Shi pment Key(" P4",

new Shi pnent Dat a(300)) ;

put (new Shi pment Key("P5",

new Shi pnent Dat a(400)) ;

"S1),
new Shi pnent Dat a(300)) ;
"S1),
new Shi pnent Dat a(200)) ;
"S1),
new Shi pnent Dat a(400)) ;
"S1),
new Shi pnent Dat a(200)) ;
"S1),
new Shi pnent Dat a(100)) ;
"S1),
new Shi pnent Dat a(100)) ;
"82),
new Shi pnent Dat a(300)) ;
"82),
new Shi pnent Dat a(400)) ;
'S8,
new Shi pnent Dat a(200)) ;

The key and value classes used above were defined in the Defining Serialized Key and

Value Classes (page 6).

9/22/2004

DB Collections

Page 27

Retrieving Database Items

In each method above, objects are added only if the map is not empty. This is a simple
way of allowing the example program to be run repeatedly. In real-life applications
another technique — checking the Map. cont ai nsKey method, for example — might be
used.

Retrieving Database Items

Retrieving information from the database is accomplished via the standard Java collections
API. In the example, the Set.iterat or method is used to iterate all Map. Entry objects
for each store. All standard Java methods for retrieving objects from a collection may be
used with the Sleepycat Java Collections API.

The Pri nt Dat abase. doWor k() method calls printEntries() to print the map entries for
each database store. It is called via the Transact i onRunner class and was outlined in the
previous section.

inport com sl eepycat. col | ections. Storedlterator;
inport java.util.lterator;

public class Sanple

{
private Sanmpl eViews views;
private class PrintDatabase inplenments Transacti onWrker
{
public void doWrk()
throws Exception
{
printEntries("Parts",
views. getPartEntrySet().iterator());
printEntries("Suppliers",
views. get SupplierEntrySet().iterator());
printEntries("Shipnents”,
vi ews. get Shi pnent EntrySet ().iterator());
}
}
private void printEntries(String label, Iterator iterator)
{
}
}

The Set of Map. Entry objects for each store is obtained from the Sanpl eVi ews object.
This set can also be obtained by calling the Map. ent rySet method of a stored map.

9/22/2004 DB Collections Page 28

Retrieving Database Items

The printEntries() prints the map entries for any stored map. The bj ect.toString
method of each key and value is called to obtain a printable representation of each object.

private void printEntries(String |abel, Iterator iterator)

{
Systemout.printin("\n--- " + label + " ---");
try
{
while (iterator.hasNext())
{
Map. Entry entry = (Map. Entry) iterator.next();
Systemout. println(entry.getKey().toString());
Systemout. println(entry.getValue().toString());
}
}
finally
{
Storedlterator.close(iterator);
}
}

It is very important that all iterators for stored collections are explicitly closed. To ensure
they are closed, a final | y clause should be used as shown above. If the iterator is not
closed, the underlying Berkeley DB cursor is not closed either and the store may become
unusable.

If the iterator is cast to Storedl terator then its Storedlterator. cl ose() method can be
called. Or, as shown above, the static Storedlterator.close() method can be called to
avoid casting. The static form of this method can be called safely for any I terator. If an
iterator for a non-stored collection is passed, it is simply ignored.

This is one of a small number of behavioral differences between standard Java collections
and stored collections. For a complete list see Using Stored Collections (page 84).

The output of the example program is shown below.

Addi ng Suppliers
Adding Parts
Addi ng Shi pnents

--- Parts ---

Part Key: nunber=P1

PartData: name=Nut col or=Red wei ght=[12.0 grans] city=London
Part Key: nunber=pP2

PartData: name=Bolt col or=G een wei ght=[17.0 grans] city=Paris
Part Key: nunber=P3

Part Data: name=Screw col or =Bl ue wei ght=[17.0 grans] city=Rone
Part Key: nunber=P4

Part Data: name=Screw col or=Red wei ght=[14.0 granms] city=London
Part Key: nunber=P5

9/22/2004 DB Collections Page 29

Handling Exceptions

Part Data: nanme=Cam col or =Bl ue wei ght=[12.0 grans] city=Paris
Part Key: nunber =P6
Part Data: nanme=Cog col or=Red wei ght=[19.0 grans] city=London

--- Suppliers ---

Suppl i er Key: nunber=S1

Suppl i erData: name=Smith status=20 city=London
Suppl i er Key: nunber=S2

Suppl i erData: name=Jones status=10 city=Paris
Suppl i er Key: nunber=S3

Suppl i erData: name=Bl ake status=30 city=Paris
Suppl i er Key: nunber =S4

Suppl i erData: name=Cl ark status=20 city=London
Suppl i er Key: nunber =S5

Suppl i erData: name=Adams stat us=30 city=At hens

--- Shipnents ---

Shi pment Key: supplier=S1 part=P1
Shi pment Dat a: quanti t y=300

Shi pment Key: supplier=S2 part=P1
Shi pment Dat a: quanti t y=300

Shi pment Key: supplier=S1 part=P2
Shi pment Dat a: quant it y=200

Shi pment Key: supplier=S2 part=P2
Shi pment Dat a: quanti t y=400

Shi pment Key: suppl i er=S3 part=P2
Shi pment Dat a: quant it y=200

Shi pment Key: supplier=S4 part=P2
Shi pment Dat a: quant it y=200

Shi pment Key: supplier=S1 part=P3
Shi pment Dat a: quanti t y=400

Shi pment Key: supplier=S1 part=P4
Shi pment Dat a: quant it y=200

Shi pment Key: supplier=S4 part=P4
Shi pment Dat a: quanti t y=300

Shi pment Key: supplier=S1 part=P5
Shi pment Dat a: quantity=100

Shi pment Key: supplier=S4 part=P5
Shi pment Dat a: quanti t y=400

Shi pment Key: supplier=S1 part=P6
Shi pment Dat a: quantity=100

Handling Exceptions

Exception handling was illustrated previously in Implementing the Main Program (page 20)
and Using Transactions (page 23) exception handling in a Sleepycat Java Collections API
application in more detail.

9/22/2004 DB Collections Page 30

Handling Exceptions

There are two exceptions that must be treated specially: RunRecover yExcepti on and
Deadl ockExcept i on.

RunRecover yExcepti on is thrown when the only solution is to shut down the application
and run recovery. All applications must catch this exception and follow the recovery
procedure.

When Deadl ockExcepti on is thrown, the application should normally retry the operation.
If a deadlock continues to occur for some maximum number of retries, the application
should give up and try again later or take other corrective actions. The Sleepycat Java
Collections API provides two APIs for transaction execution.

* When using the Current Transacti on class directly, the application must catch
Dead| ockExcepti on and follow the procedure described previously.

« When using the Transact i onRunner class, retries are performed automatically and the
application need only handle the case where the maximum number of retries has been
reached. In that case, Transacti onRunner. run will throw Deadl ockExcept i on.

When using the Transacti onRunner class there are two other considerations.

 First, if the application-defined Tr ansact i onWr ker . doWr k method throws an exception
the transaction will automatically be aborted, and otherwise the transaction will
automatically be committed. Applications should design their transaction processing
with this in mind.

« Second, please be aware that Transact i onRunner. r un unwraps exceptions in order to
discover whether a nested exception is a Deadl ockExcepti on. This is particularly
important since all Berkeley DB exceptions that occur while calling a stored collection
method are wrapped with a Runt i neExcept i onW apper . This wrapping is necessary
because Berkeley DB exceptions are checked exceptions, and the Java collections API
does not allow such exceptions to be thrown.

When calling Transact i onRunner . r un, the unwrapped (nested) exception will be unwrapped
and thrown automatically. If you are not using Transact i onRunner or if you are handling
exceptions directly for some other reason, use the Excepti onUnw apper . unw ap method
to get the nested exception. For example, this can be used to discover that an exception
is a RunRecover yExcept i on as shown below.

i nport com sl eepycat . db. RunRecover yExcepti on;
i nport com sl eepycat. util.ExceptionUnwr apper;

catch (Exception e)

{
e = ExceptionUnwr apper. unwr ap(e);
if (e instanceof RunRecoveryException)
{
/1 follow recovery procedure
}
}

9/22/2004 DB Collections Page 31

Chapter 3. Using Secondary Indices

In the Basic example, each store has a single primary key. The Index example extends
the Basic example to add the use of secondary keys.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Opening Secondary Key Indices

Secondary indices or secondary databases are used to access a primary database by a key
other than the primary key. Recall that the Supplier Number field is the primary key of

the Supplier database. In this section, the Supplier City field will be used as a secondary
lookup key. Given a city value, we would like to be able to find the Suppliers in that city.
Note that more than one Supplier may be in the same city.

Both primary and secondary databases contain key-value records. The key of an index
record is the secondary key, and its value is the key of the associated record in the primary
database. When lookups by secondary key are performed, the associated record in the
primary database is transparently retrieved by its primary key and returned to the caller.

Secondary indices are maintained automatically when index key fields (the City field in
this case) are added, modified or removed in the records of the primary database.
However, the application must implement a Secondar yKeyCr eat or that extracts the index
key from the database record.

It is useful to contrast opening an secondary index with opening a primary database (as
described earlier in Opening and Closing Databases (page 15).

« Aprimary database may be associated with one or more secondary indices. A secondary
index is always associated with exactly one primary database.

« For a secondary index, a Secondar yKeyCr eat or must be implemented by the application
to extract the index key from the record of its associated primary database.

« A primary database is represented by a Dat abase object and a secondary index is
represented by a Secondar yDat abase object. The Secondar yDat abase class extends the
Dat abase class.

« When a Secondar yDat abase is created it is associated with a primary Dat abase object
and a Secondar yKeyCr eat or .

The Sanpl eDat abase class is extended to open the Supplier-by-City secondary key index.

inport com sl eepycat. bind. serial . Serial Serial KeyCreat or;
i nport com sl eepycat . db. Secondar yConfi g;
i nport com sl eepycat . db. Secondar yDat abase;

public class Sanpl eDat abase
{

9/22/2004 DB Collections Page 32

Opening Secondary Key Indices

private static final String SUPPLIER CI TY_INDEX = "supplier_city_index";
private SecondaryDatabase supplierByCityDb;

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNot FoundException

{

SecondaryConfig secConfig = new SecondaryConfig();
secConfig. set Transactional (true);

secConfig.setAll owCreate(true);

secConfi g. set Type(Dat abaseType. BTREE) ;

secConfig. set Sort edDupl i cates(true);

secConfi g. set KeyCreat or (
new Suppl i er ByG t yKeyCreat or (j avaCat al og,
Suppl i er Key. cl ass,
Suppl i er Dat a. cl ass,
String.class));

suppl i erByCi tyDb = env. openSecondar yDat abase(nul |,
SUPPLI ER_CI TY_I NDEX,
null,
suppl i er Db,
secConfig);

}

A SecondaryConf i g object is used to configure the secondary database. The

Secondar yConfi g class extends the Dat abaseConfi g class, and most steps for configuring
a secondary database are the same as for configuring a primary database. The main
difference in the example above is that the Secondar yConfi g. set Sort edDupl i cat es()
method is called to allow duplicate index keys. This is how more than one Supplier may
be in the same City. If this property is not specified, the default is that the index keys of
all records must be unique.

For a primary database, duplicate keys are not normally used since a primary database
with duplicate keys may not have any associated secondary indices. If primary database
keys are not unique, there is no way for a secondary key to reference a specific record
in the primary database.

Note that set Sort edDupl i cat es() and not set Unsort edDupl i cat es() was called. Sorted
duplicates are always used for indices rather than unsorted duplicates, since sorting
enables optimized equality joins.

9/22/2004 DB Collections Page 33

Opening Secondary Key Indices

Opening a secondary key index requires creating a Secondar yKeyCr eat or . The
Suppl i er ByCi t yKeyCr eat or class implements the Secondar yKeyCr eat or interface and will
be defined below.

The Secondar yDat abase object is opened last. If you compare the openSecondar yDat abase()
and openDat abase() methods you'll notice only two differences:

« openSecondar yDat abase() has an extra parameter for specifying the associated primary
database. The primary database is suppl i er Db in this case.

o The last parameter of openSecondar yDat abase() is a Secondar yConfi g instead of a
Dat abaseConfi g.

How to use the secondary index to access records will be shown in a later section.

The application-defined Suppl i er ByCi t yKeyCr eat or class is shown below. It was used
above to configure the secondary database.

public class Sanpl eDat abase

{
private static class SupplierByCityKeyCreator
extends Serial Seri al KeyCreat or
{
private SupplierByGCityKeyCreator(Storedd assCatal og catal og,
Class primaryKeyd ass,
C ass val ued ass,
C ass i ndexKeyd ass)
{
super (catal og, primaryKeyC ass, val ueC ass, indexKeyd ass);
}
public bject createSecondaryKey(bject primaryKeyl nput,
oj ect val uel nput)
{
Suppl i erData supplierData = (SupplierData) val uel nput;
return supplierData.getCty();
}
}
}

In general, a key creator class must implement the Secondar yKeyCr eat or interface. This
interface has methods that operate on the record data as raw bytes. In practice, it is
easiest to use an abstract base class that performs the conversion of record data to and
from the format defined for the database's key and value. The base class implements the
Secondar yKeyCr eat or interface and has abstract methods that must be implemented in
turn by the application.

9/22/2004 DB Collections Page 34

Opening Secondary Key Indices

In this example the Seri al Seri al KeyCr eat or base class is used because the database
record uses the serial format for both its key and its value. The abstract methods of this
class have key and value parameters of type bj ect which are automatically converted
to and from the raw record data by the base class.

To perform the conversions properly, the key creator must be aware of all three formats
involved: the key format of the primary database record, the value format of the primary
database record, and the key format of the index record. The Seri al Seri al KeyCr eat or
constructor is given the base classes for these three formats as parameters.

The Seri al Seri al KeyCreat or. cr eat eSecondar yKey method is given the key and value of
the primary database record as parameters, and it returns the key of the index record.
In this example, the index key is a field in the primary database record value. Since the
record value is known to be a Suppl i er Dat a object, it is cast to that class and the city
field is returned.

Note that the pri maryKeyl nput parameter is not used in the example. This parameter is
needed only when an index key is derived from the key of the primary database record.
Normally an index key is derived only from the primary database record value, but it may
be derived from the key, value or both.

The following getter methods return the secondary database object for use by other
classes in the example program. The secondary database object is used to create Java
collections for accessing records via their secondary keys.

public class Sanpl eDat abase

{
publ ic final SecondaryDatabase get SupplierByGityDat abase()
{ return supplierByC tyDb;
}

\ e

The following statement closes the secondary database.

public class Sanpl eDat abase
{

public void close()
throws Dat abaseException {

suppl i erByCityDb. cl ose();
part Db. cl ose();

suppl i er Db. cl ose();

shi pnent Db. cl ose() ;

j avaCat al og. cl ose();

env. cl ose();

9/22/2004 DB Collections Page 35

More Secondary Key Indices

}

Secondary databases must be closed before closing their associated primary database.

More Secondary Key Indices

This section builds on the prior section describing secondary key indices. Two more
secondary key indices are defined for indexing the Shipment record by PartNumber and
by SupplierNumber.

The Sanpl eDat abase class is extended to open the Shipment-by-Part and
Shipment-by-Supplier secondary key indices.

i nport com sl eepycat. bind. serial . Serial Serial KeyCreat or;
i nport com sl eepycat . db. Secondar yConfi g;
i nport com sl eepycat . db. Secondar yDat abase;

public class Sanpl eDat abase
{

private static final String SH PVENT PART |NDEX = "shi pnent _part _index";
private static final String SH PVENT SUPPLIER | NDEX =
"shi pment _suppl i er i ndex";

private SecondaryDat abase shi pnent ByPart Db;
private SecondaryDat abase shi pnent BySuppl i er Db;

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNot FoundException
{

Secondar yConfi g secConfig = new SecondaryConfig();
secConfig. set Transactional (true);

secConfig.set All owCreate(true);

secConfi g. set Type(Dat abaseType. BTREE) ;

secConfig. set SortedDupl i cates(true);

secConfi g. set KeyCreat or (
new Shi pnent ByPar t KeyCr eat or (j avaCat al og,
Shi pnent Key. cl ass,
Shi pnent Dat a. ¢l ass,
Part Key. cl ass));
shi pnent ByPart Db = env. openSecondar yDat abase(nul |,
SHI PMENT_PART _| NDEX,
null,
shi pnent Db,
secConfig);

9/22/2004 DB Collections Page 36

More Secondary Key Indices

secConfi g. set KeyCreat or (
new Shi pnent BySuppl i er KeyCr eat or (j avaCat al og,
Shi prent Key. cl ass,
Shi prent Dat a. cl ass,
Suppl i er Key. cl ass));
shi prment BySuppl i erDob = env. openSecondar yDat abase(nul |,
SHI PMENT_SUPPLI ER_| NDEX,
null,
shi pnent Db,
secConfig);

}

The statements in this example are very similar to the statements used in the previous
section for opening a secondary index.

The application-defined Shi pnent ByPar t KeyCr eat or and Shi pment BySuppl i er KeyCr eat or
classes are shown below. They were used above to configure the secondary database
objects.

public class Sanpl eDat abase
{

private static class ShipnmentByPart KeyCreat or
extends Serial Seri al KeyCreat or

{
private Shipnment ByPart KeyCreat or (St oredd assCat al og cat al og,
Class primryKeyd ass,
C ass val ued ass,
Cl ass i ndexKeyd ass)
{
super (catal og, primaryKeyC ass, val ueC ass, indexKeyd ass);
}
public Object createSecondaryKey(bject primaryKeyl nput,
oj ect val uel nput)
{
Shi pnent Key shi pment Key = (Shi pnent Key) pri maryKeyl nput ;
return new Part Key(shi pnent Key. get Part Nurber ()) ;
}
}

private static class ShipmentBySupplierKeyCreat or
extends Serial Seri al KeyCreat or
{

private ShipnmentBySuppl i er KeyCreat or (St oredd assCat al og cat al og,
Class primryKeyd ass,
C ass val ued ass,
Cl ass i ndexKeyd ass)

9/22/2004 DB Collections Page 37

More Secondary Key Indices

{
}

public Ooject createSecondaryKey(Qhject primaryKeyl nput,
(oj ect val uel nput)

super (catal og, primaryKeyC ass, val ueC ass, indexKeyd ass);

{
Shi pment Key shi pment Key = (Shi pment Key) primaryKeyl nput ;
return new Suppl i erKey(shi pment Key. get Suppl i er Nunber ());

}

The key creator classes above are almost identical to the one defined in the previous
section for use with a secondary index. The index key fields are different, of course, but
the interesting difference is that the index keys are extracted from the key, not the value,
of the Shipment record. This illustrates that an index key may be derived from the primary
database record key, value, or both.

The following getter methods return the secondary database objects for use by other
classes in the example program.

public class Sanpl eDat abase

{
public final SecondaryDatabase get Shi pment ByPart Dat abase()
{
return shi pnent ByPart Db;
}
public final SecondaryDatabase get Shi pment BySuppl i er Dat abase()
{
return shi pnent BySuppl i er Db;
}
}

The following statements close the secondary databases.

public class Sanpl eDat abase
{

public void close()
throws Dat abaseException {

suppl i erByG tyDb. cl ose();

shi pnent ByPart Db. cl ose();

shi pnent BySuppl i er Db. cl ose();
partDb. cl ose();

9/22/2004 DB Collections Page 38

Creating Indexed Collections

suppl i er Db. cl ose();
shi pnent Db. cl ose() ;
j avaCat al og. cl ose();
env. cl ose();

}

Secondary databases must be closed before closing their associated primary database.

Creating Indexed Collections

In the prior Basic example, bindings and Java collections were created for accessing
databases via their primary keys. In this example, bindings and collections are added for
accessing the same databases via their index keys. As in the prior example, serial bindings
and the Java Map class are used.

When a map is created from a Secondar yDat abase, the keys of the map will be the index
keys. However, the values of the map will be the values of the primary database associated
with the index. This is how index keys can be used to access the values in a primary
database.

For example, the Supplier's City field is an index key that can be used to access the
Supplier database. When a map is created using the suppl i er ByC t yDb() method, the key
to the map will be the City field, a String object. When Map. get is called passing the
City as the key parameter, a Suppl i er Dat a object will be returned.

The Sampl eVi ews class is extended to create an index key binding for the Supplier's City
field and three Java maps based on the three indices created in the prior section.

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat. col | ections. StoredEntrySet;
i nport com sl eepycat. col | ections. StoredMap;

public class SanpleVi ews

{

private StoredMap supplierByCityMap;
private StoredMap shi pment ByPart Map;
private StoredMap shi pnment BySuppl i er Map;

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)

{
Cl assCatal og catal og = db. get d assCatal og();

Ent ryBi ndi ng cityKeyBinding =
new Seri al Bi ndi ng(catal og, String.class);

9/22/2004 DB Collections Page 39

Creating Indexed Collections

suppl i erByC tyMp =
new StoredMap(db. get Suppl i er ByGi t yDat abase(),
ci t yKeyBi ndi ng, supplierVal ueBinding, true);
shi prnent ByPart Map =
new StoredMap(db. get Shi pment ByPar t Dat abase(),
par t KeyBi ndi ng, shi pment Val ueBi ndi ng, true);
shi pnent BySuppl i er Map =
new St oredMap(db. get Shi pnent BySuppl i er Dat abase(),
suppl i er KeyBi ndi ng, shi pnent Val ueBi ndi ng, true);

}

In general, the indexed maps are created here in the same way as the unindexed maps
were created in the Basic example. The differences are:

« The first parameter of the St or edMap constructor is a Secondar yDat abase rather than
a Dat abase.

« The second parameter is the index key binding rather than the primary key binding.

For the suppl i er ByGi t yMap, the ci t yKeyBi ndi ng must first be created. This binding was
not created in the Basic example because the City field is not a primary key.

Like the bindings created earlier for keys and values, the ci t yKeyBi ndi ng is a

Seri al Bi ndi ng. Unlike the bindings created earlier, it is an example of creating a binding
for a built-in Java class, String, instead of an application-defined class. Any serializable
class may be used.

For the shi pnent ByPart Map and shi pment BySuppl i er Map, the part KeyBi ndi ng and
suppl i er KeyBi ndi ng are used. These were created in the Basic example and used as the
primary key bindings for the part Map and suppl i er Map.

The value bindings — suppl i er Val ueBi ndi ng and shi pnent Val ueBi ndi ng — were also created
in the Basic example.

This illustrates that bindings and formats may and should be reused where appropriate
for creating maps and other collections.

The following getter methods return the stored maps for use by other classes in the
example program. Convenience methods for returning entry sets are also included.

public class SanpleVi ews

{
public final StoredMap get Shipnent ByPart Map()
{
return shi pnent ByPart Map;
}

9/22/2004 DB Collections Page 40

Retrieving Items by Index Key

public final StoredMap get Shi pnent BySupplier Map()

{
return shi pnent BySuppl i er Map;
}
public final StoredMap get SupplierByC tyMp()
{
return supplierByG tyMp;
}
public final StoredEntrySet get Shi pment ByPartEntrySet ()
{
return (StoredEntrySet) shipmentByPart Map. entrySet();
}
public final StoredEntrySet get Shipment BySupplierEntrySet ()
{
return (StoredEntrySet) shipmentBySupplierMp.entrySet();
}
public final StoredEntrySet get SupplierByGityEntrySet()
{
return (StoredEntrySet) supplierByCityMap.entrySet();

}
_—
Retrieving Items by Index Key

Retrieving information via database index keys can be accomplished using the standard
Java collections API, using a collection created from a Secondar yDat abase rather than a
Dat abase. However, the standard Java API does not support duplicate keys: more than
one element in a collection having the same key. All three indices created in the prior
section have duplicate keys because of the nature of the city, part number and supplier
number index keys. More than one supplier may be in the same city, and more than one
shipment may have the same part number or supplier number. This section describes how
to use extended methods for stored collections to return all values for a given key.

Using the standard Java collections API, the Map. get method for a stored collection with
duplicate keys will return only the first value for a given key. To obtain all values for a
given key, the St oredMap. dupl i cat es method may be called. This returns a Col | ection
of values for the given key. If duplicate keys are not allowed, the returned collection will
have at most one value. If the key is not present in the map, an empty collection is
returned.

The Sanpl e class is extended to retrieve duplicates for specific index keys that are present
in the database.

9/22/2004 DB Collections Page 41

Retrieving Items by Index Key

i nport com sl eepycat. col | ections. Storedlterator;
inport java.util.lterator;

public class Sanple

{
private Sampl eVi ews views;
private class PrintDatabase inplenments TransactionWrker
{
public void doWrk()
throws Exception
{
printEntries("Parts",
views.getPartEntrySet().iterator());
printEntries("Suppliers",
views. get SupplierEntrySet().iterator());
printVal ues("Suppliers for Gty Paris",
vi ews. get Suppl i er ByGi t yMap() . dupl i cat es(
"Paris").iterator());
printEntries("Shipnents”,
vi ews. get Shi pnent EntrySet ().iterator());
print Val ues(" Shipnents for Part P1",
vi ews. get Shi pment ByPart Map() . dupl i cat es(
new PartKey("P1")).iterator());
print Val ues(" Shi prnents for Supplier S1",
vi ews. get Shi pnent BySuppl i er Map() . dupl i cat es(
new
Suppl i erKey("S1")).iterator());
}
}
private void printValues(String |abel, Iterator iterator)
{
Systemout.printin("\n--- " + |abel + " ---");
try
{
while (iterator.hasNext())
{
Systemout.printin(iterator.next().toString());
}
}
finally
{
Storedliterator.close(iterator);
}
}
}
9/22/2004 DB Collections Page 42

Retrieving Items by Index Key

The St or edMap. dupl i cat es method is called passing the desired key. The returned value
is a standard Java Col | ecti on containing the values for the specified key. A standard Java
Iterator is then obtained for this collection and all values returned by that iterator are
printed.

Another technique for retrieving duplicates is to use the collection returned by

Map. entrySet . When duplicate keys are present, a Map. Entry object will be present in
this collection for each duplicate. This collection can then be iterated or a subset can be
created from it, all using the standard Java collection API.

Note that we did not discuss how duplicates keys can be explicitly added or removed in
a collection. For index keys, the addition and deletion of duplicate keys happens
automatically when records containing the index key are added, updated, or removed.

While not shown in the example program, it is also possible to create a store with duplicate
keys in the same way as an index with duplicate keys — by calling

Dat abaseConfi g. set Sort edDupl i cat es() method. In that case, calling Map. put will add
duplicate keys. To remove all duplicate keys, call Map. renove. To remove a specific
duplicate key, call St or edMap. dupl i cat es and then call Col | ecti on. renpve using the
returned collection. Duplicate values may also be added to this collection using

Col I ecti on. add.

The output of the example program is shown below.

Addi ng Suppliers
Adding Parts
Addi ng Shi pnents

--- Parts ---

Part Key: nunber=P1

PartData: name=Nut col or=Red wei ght=[12.0 grans] city=London
Part Key: nunber=pP2

PartData: name=Bolt col or=G een wei ght=[17.0 grans] city=Paris
Part Key: nunber=P3

Part Data: name=Screw col or =Bl ue wei ght=[17.0 grans] city=Rone
Part Key: nunber=P4

PartData: name=Screw col or=Red wei ght=[14.0 granms] city=London
Part Key: nunber=P5

Part Data: name=Cam col or =Bl ue wei ght=[12. 0 grans] city=Paris
Part Key: nunber=P6

Part Data: name=Cog col or=Red wei ght=[19.0 grans] city=London

--- Suppliers ---

Suppl i erKey: nunber=S1

Suppl i erData: name=Smith status=20 city=London
Suppl i erKey: nunber=S2

Suppl i erData: name=Jones status=10 city=Paris
Suppl i erKey: nunber=S3

Suppl i erData: name=Bl ake status=30 city=Paris
Suppl i erKey: nunber=$4

9/22/2004 DB Collections Page 43

Retrieving Items by Index Key

Suppl i erData: name=Cl ark status=20 city=London
Suppl i er Key: nunber =S5
Suppl i erData: name=Adams stat us=30 city=At hens

--- Suppliers for Gty Paris ---
Suppl i erData: name=Jones status=10 city=Paris
Suppl i erData: name=Bl ake status=30 city=Paris

--- Shipnents ---
Shi pment Key: supplier=S1 part=P1

Shi prent Dat a:

quant i t y=300

Shi pment Key: supplier=S2 part=P1

Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:
Shi pment Key:
Shi prent Dat a:

--- Shipnents for Part Pl ---

Shi prent Dat a:
Shi prent Dat a:

quant i t y=300

suppl i er=S1 part=p2

quant i ty=200

suppl i er=S2 part =p2

quant i t y=400

suppl i er=S3 part=pP2

quant i ty=200

suppl i er=S4 part=p2

quant i ty=200

suppl i er=S1 part=P3

quant i t y=400

suppl i er=S1 part=P4

quant i ty=200

suppl i er=S4 part=P4

quant i t y=300

suppl i er=S1 part=P5

quant i ty=100

suppl i er=S4 part =P5

quant i t y=400

suppl i er=S1 part=P6

quant i ty=100

quant i t y=300
quant i t y=300

--- Shipnents for Supplier

Shi prent Dat a:
Shi prent Dat a:
Shi prent Dat a:
Shi prent Dat a:
Shi prent Dat a:
Shi prent Dat a:

quant i t y=300
quant i ty=200
quant i t y=400
quant i ty=200
quant i ty=100
quant i ty=100

9/22/2004

DB Collections

Page 44

Chapter 4. Using Entity Classes

In the prior examples, the keys and values of each store were represented using separate
classes. For example, a Part Key and a Par t Dat a class were used. Many times it is desirable
to have a single class representing both the key and the value, for example, a Part class.

Such a combined key and value class is called an entity class and is used along with an
entity binding. Entity bindings combine a key and a value into an entity when reading a
record from a collection, and split an entity into a key and a value when writing a record
to a collection. Entity bindings are used in place of value bindings, and entity objects are
used with collections in place of value objects.

Some reasons for using entities are:

« When the key is a property of an entity object representing the record as a whole,
the object's identity and concept are often clearer than with key and value objects
that are disjoint.

» Asingle entity object per record is often more convenient to use than two objects.

Of course, instead of using an entity binding, you could simply create the entity yourself
after reading the key and value from a collection, and split the entity into a key and value
yourself before writing it to a collection. But this would detract from the convenience of
the using the Java collections API. It is convenient to obtain a Part object directly from
Map. get and to add a Part object using Set. add. Collections having entity bindings can
be used naturally without combining and splitting objects each time a collection method
is called; however, an entity binding class must be defined by the application.

In addition to showing how to use entity bindings, this example illustrates a key feature
of all bindings: Bindings are independent of database storage parameters and formats.
Compare this example to the prior Index example and you'll see that the Sanpl e and
Sanpl eVi ews classes have been changed to use entity bindings, but the Sanpl eDat abase
class was not changed at all. In fact, the Entity program and the Index program can be
used interchangeably to access the same physical database files. This demonstrates that
bindings are only a "view" onto the physical stored data.

Wiar ni ng: When using multiple bindings for the same database, it is the application’s
responsibility to ensure that the same format is used for all bindings. For example, a
serial binding and a tuple binding cannot be used to access the same records.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Entity Classes

As described in the prior section, entity classes are combined key/value classes that are
managed by entity bindings. In this example the Part, Suppli er and Shi pnent classes are
entity classes. These classes contain fields that are a union of the fields of the key and
value classes that were defined earlier for each store.

9/22/2004 DB Collections Page 45

Defining Entity Classes

In general, entity classes may be defined in any way desired by the application. The entity
binding, which is also defined by the application, is responsible for mapping between
key/value objects and entity objects.

The Part, Supplier and Shi pnent entity classes are defined below.

An important difference between the entity classes defined here and the key and value
classes defined earlier is that the entity classes are not serializable (do not implement
the Seri al i zabl e interface). This is because the entity classes are not directly stored.
The entity binding decomposes an entity object into key and value objects, and only the
key and value objects are serialized for storage.

One advantage of using entities can already be seen in the t oSt ri ng() method of the
classes below. These return debugging output for the combined key and value, and will
be used later to create a listing of the database that is more readable than in the prior
examples.

public class Part

{
private String nunber;
private String nane;
private String col or;
private Wi ght weight;
private String city;

public Part(String nunber, String name, String color, \Wight weight,

String city)
{
thi s. nunber = nunber;
this.name = nane;
this.color = color;
this.wei ght = weight;
this.city = city;
}
public final String getNunber()
{
return nunber;
}
public final String getName()
{
return nang;
}
public final String getColor()
{
return color;
}

9/22/2004 DB Collections Page 46

Defining Entity Classes

public final Weight getWeight()

{
return weight;
}
public final String getGty()
{
return city;
}
public String toString()
{
return "Part: number=" + nunber +
" name=" + name +
" color=" + color +
" weight=" + weight +
"city=" +city +'.";
}
}
public class Supplier
{

private String nunber;
private String nane;
private int status;
private String city;

public Supplier(String number, String name, int status, String city)

{
thi s. nunber = nunber;
this.name = name;
this.status = status;
this.city = city;
}
public final String getNumber ()
{
return nunber;
}
public final String get Name()
{
return nane;
}
public final int getStatus()
{
return status;
}

9/22/2004 DB Collections Page 47

Defining Entity Classes

public final String getGity()

{
return city;
}
public String toString()
{
return "Supplier: nunber=" + nunber +
" name=" + nane +
" status=" + status +
"city=" +city +'.";
}
}
public class Shipnent
{

private String partNunber;
private String supplierNunber;
private int quantity;

public Shipnent(String partNunber, String supplierNunber, int quantity)

{
this. part Nunber = part Nunber;
this.supplierNunber = supplierNunber;
this.quantity = quantity;
}
public final String getPartNunber()
{
return partNumber;
}
public final String getSupplierNunber()
{
return supplierNunber;
}
public final int getQuantity()
{
return quantity;
}
public String toString()
{

return "Shipment: part=" + partNunber +
" supplier=" + supplierNumber +

[

" quantity=" + quantity + '.";

9/22/2004 DB Collections Page 48

Creating Entity Bindings

}

Creating Entity Bindings

Entity bindings are similar to ordinary bindings in that they convert between Java objects
and the stored data format of keys and values. In addition, entity bindings map between
key/value pairs and entity objects. An ordinary binding is a one-to-one mapping, while
an entity binding is a two-to-one mapping.

The part Val ueBi ndi ng, suppl i er Val ueBi ndi ng and shi pment Val ueBi ndi ng bindings are
created below as entity bindings rather than (in the prior examples) serial bindings.

i mport com sl eepycat . bi nd. Ent ryBi ndi ng;

i mport com sl eepycat . bi nd. Enti t yBi ndi ng;

i nport com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Seri al Bi ndi ng;

public class SanpleVi ews

{

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)

{

}

Cl assCatal og catal og = db. get 0 assCatal og();
Seri al Bi ndi ng partKeyBinding =
new Seri al Bi ndi ng(catal og, PartKey.class);
EntityBindi ng part Val ueBi nding =
new Part Bi ndi ng(catal og, PartKey.class, PartData.class);
Seri al Bi ndi ng supplierKeyBinding =
new Seri al Bi ndi ng(catal og, SupplierKey.class);
EntityBindi ng supplierVal ueBinding =
new Suppl i er Bi ndi ng(catal og, SupplierKey. cl ass,
Suppl i er Dat a. cl ass);
Seri al Bi ndi ng shi pnent KeyBi ndi ng =
new Seri al Bi ndi ng(catal og, Shi pnentKey. cl ass);
Enti tyBindi ng shi pnent Val ueBi nding =
new Shi pnent Bi ndi ng(cat al og, Shi pment Key. cl ass,
Shi prent Dat a. cl ass) ;
Serial Binding cityKeyBinding =
new Seri al Bi ndi ng(catal og, String.class);

The entity bindings will be used in the next section to construct stored map objects.

The Part Bi ndi ng class is defined below.

9/22/2004

DB Collections Page 49

Creating Entity Bindings

public class SanpleVi ews

{
private static class PartBinding extends Serial Serial Bi nding {
private PartBindi ng(d assCatal og cl assCat al og,
C ass keyd ass,
Cl ass datad ass)
{
super (cl assCat al og, keyd ass, dataC ass);
}
public Object entryToChject(Cbject keylnput, Object datalnput)
{
Part Key key = (PartKey) keylnput;
PartData data = (PartData) datalnput;
return new Part (key. get Nunber (), data.getNane(), data.getColor(),
data. get\\ei ght (), data.getGity());
}
public Object object ToKey(Object object)
{
Part part = (Part) object;
return new PartKey(part.get Nunber());
}
public oject objectToData(Chject object)
{
Part part = (Part) object;
return new PartData(part.getNane(), part.getColor(),
part.get\Wight(), part.getCty());
}
}
}

In general, an entity binding is any class that implements the Enti t yBi ndi ng interface,
just as an ordinary binding is any class that implements the Ent r yBi ndi ng interface. In
the prior examples the built-in Seri al Bi ndi ng class (which implements Ent r yBi ndi ng)

was used and no application-defined binding classes were needed.

In this example, application-defined binding classes are used that extend the

Seri al Seri al Bi ndi ng abstract base class. This base class implements Enti t yBi ndi ng and
provides the conversions between key/value bytes and key/value objects, just as the
Seri al Bi ndi ng class does. The application-defined entity class implements the abstract
methods defined in the base class that map between key/value objects and entity objects.

Three abstract methods are implemented for each entity binding. The ent ryToQbj ect ()
method takes as input the key and data objects, which have been deserialized
automatically by the base class. As output, it returns the combined Part entity.

9/22/2004 DB Collections Page 50

Creating Entity Bindings

The obj ect ToKey() and obj ect ToDat a() methods take an entity object as input. As output
they return the part key or data object that is extracted from the entity object. The key
or data will then be serialized automatically by the base class.

The Suppl i er Bi ndi ng and Shi prrent Bi ndi ng classes are very similar to the Part Bi ndi ng
class.

public class SanpleVi ews

{

private static class SupplierBinding extends Serial Serial Bi nding {
private SupplierBinding(Cd assCatal og cl assCat al og,
C ass keyd ass,
C ass datad ass)

{
super (cl assCat al og, keyd ass, dataC ass);
}
public Object entryToChject(Cbject keylnput, Object datalnput)
{
Suppl i erKey key = (SupplierKey) keylnput;
SupplierData data = (SupplierData) datalnput;
return new Supplier(key. get Number (), data.getName(),
data.getStatus(), data.getCty());
}
publ i c Object object ToKey(bject object)
{
Supplier supplier = (Supplier) object;
return new SupplierKey(supplier.getNunber());
}
public object objectToData(Chject object)
{
Supplier supplier = (Supplier) object;
return new SupplierData(supplier.getName(), supplier.getStatus(),
supplier.getCity());
}

}

private static class ShipmentBinding extends Serial Serial Bi nding {
private ShipmentBindi ng(Cd assCatal og cl assCat al og,
C ass keyd ass,
C ass datad ass)

{
}

super (cl assCat al og, keyd ass, dataC ass);

public Object entryToChject(Cbject keylnput, Object datalnput)

9/22/2004 DB Collections Page 51

Creating Collections with Entity

Bindings

{

Shi pment Key key = (Shi pnent Key) keyl nput ;

Shi pment Dat a data = (Shi pment Data) dat al nput;

return new Shi pnent (key. get Part Nunber (), key. get SupplierNunber (),

data. get Quantity());

}
public Object object ToKey(Object object)
{

Shi pment shi pment = (Shi pment) obj ect;

return new Shi pment Key(shi pnent . get Part Nurber (),

shi pnent . get Suppl i er Nunber ()) ;

}
public oject objectToData(Chject object)
{

Shi pment shi pment = (Shi pment) object;

return new Shi pment Dat a(shi pment. get Quantity());
}

}
Creating Collections with Entity Bindings

Stored map objects are created in this example in the same way as in prior examples,
but using entity bindings in place of value bindings. All value objects passed and returned
to the Java collections API are then actually entity objects (Part, Suppl i er and Shi pnent).
The application no longer deals directly with plain value objects (Part Dat a, Suppl i er Dat a
and Shi prent Dat a).

Since the part Val ueBi ndi ng, suppl i er Val ueBi ndi ng and shi pnent Val ueBi ndi ng were
defined as entity bindings in the prior section, there are no source code changes necessary
for creating the stored map objects.

public class SanpleVi ews

{

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)
{

partMap =
new St oredMap(db. get Part Dat abase(),
part KeyBi ndi ng, partVal ueBi nding, true);
suppl i erMap =
new StoredMap(db. get Suppl i er Dat abase(),
suppl i er KeyBi ndi ng, suppli erVal ueBi ndi ng, true);
shi pnent Map =
new St oredMap(db. get Shi pnent Dat abase(),

9/22/2004 DB Collections Page 52

Using Entities with Collections

shi pnent KeyBi ndi ng, shi pment Val ueBi ndi ng, true);

}...

Specifying an Ent i t yBi ndi ng will select a different St or edMap constructor, but the syntax
is the same. In general, an entity binding may be used anywhere that a value binding is
used.

The following getter methods are defined for use by other classes in the example program.
Instead of returning the map's entry set (Map. ent rySet), the map's value set (Map. val ues)
is returned. The entry set was convenient in prior examples because it allowed enumerating
all key/value pairs in the collection. Since an entity contains the key and the value,
enumerating the value set can now be used more conveniently for the same purpose.

i nport com sl eepycat. col | ections. StoredVal ueSet ;

public class SanpleVi ews

{
public StoredVal ueSet getPart Set ()
{
return (StoredVal ueSet) partMap. val ues();
}
public StoredVal ueSet get SupplierSet ()
{
return (StoredVal ueSet) supplierMap. val ues();
}
public StoredVal ueSet get Shi pment Set ()
{
return (StoredVal ueSet) shi pment Map. val ues();
}
}

Notice that the collection returned by the St or edMap. val ues method is actually a

St or edVal ueSet and not just a Col | ecti on as defined by the Map. val ues interface. As long
as duplicate keys are not allowed, this collection will behave as a true set and will disallow
the addition of duplicates, etc.

Using Entities with Collections

In this example entity objects, rather than key and value objects, are used for adding
and enumerating the records in a collection. Because fewer classes and objects are
involved, adding and enumerating is done more conveniently and more simply than in the
prior examples.

9/22/2004 DB Collections Page 53

Using Entities with Collections

For adding and iterating entities, the collection of entities returned by Map. val ues is
used. In general, when using an entity binding, all Java collection methods that are passed

or returned a value object will be passed or returned an entity object instead.

The Sanpl e class has been changed in this example to add objects using the Set. add
method rather than the Map. put method that was used in the prior examples. Entity
objects are constructed and passed to Set. add.

inport java.util. Set;

public class Sanple

{
private void addSuppliers()
{
Set suppliers = views. get SupplierSet();
if (suppliers.isEmty())
{
System out. println("Addi ng Suppliers");
suppl i ers. add(new Supplier("S1", "Smth", 20, "London"));
suppl i ers. add(new Supplier("S2", "Jones", 10, "Paris"));
suppl i ers. add(new Supplier("S3", "Blake", 30, "Paris"));
suppl i ers. add(new Supplier("S4", "Cark", 20, "London"));
suppl i ers. add(new Supplier("S5", "Adans", 30, "Athens"));
}
}
private void addParts()
{
Set parts = views.getPartSet();
if (parts.iseEnpty())
{
System out. println("Adding Parts");
parts.add(new Part("P1", "Nut", "Red",
new Wi ght (12. 0, Wi ght. GRAMS), "London"));
parts.add(new Part("P2", "Bolt", "Geen",
new Wi ght (17.0, Wi ght. GRAMB), "Paris"));
parts.add(new Part("P3", "Screw', "Blue",
new Wi ght (17. 0, Wi ght. GRAMS), "Rone"));
parts.add(new Part("P4", "Screw', "Red",
new Wi ght (14. 0, Wi ght. GRAMS), "London"));
parts.add(new Part("P5", "Cani', "Bl ue",
new Wi ght (12. 0, Wi ght. GRAMB), "Paris"));
parts.add(new Part("P6", "Cog", "Red",
new Wi ght (19. 0, Wi ght. GRAMS), "London"));
}
}
private void addshi pnents()
9/22/2004 DB Collections Page 54

Using Entities with Collections

{
Set shipnents = views. get Shi pment Set ();
if (shipnents.isEnpty())
{
System out. println("Addi ng Shipments");
shi pnent s. add(new Shi pment (" P1", "S1", 300));
shi pnent s. add(new Shi pment (" P2", "S1", 200));
shi pnent s. add(new Shi pment (" P3", "S1", 400));
shi pnent s. add(new Shi pment (" P4", "S1", 200));
shi pnent s. add(new Shi pment (" P5", "S1", 100));
shi pnent s. add(new Shi pment (" P6", "S1", 100));
shi pnent s. add(new Shi pment (" P1", "S2", 300));
shi pnent s. add(new Shi pment (" P2", "S2", 400));
shi pnent s. add(new Shi pment (" P2", "S3", 200));
shi pnent s. add(new Shi pment (" P2", "S4", 200));
shi pnent s. add(new Shi pment (" P4", "S4", 300));
shi pnent s. add(new Shi pment (" P5", "S4", 400));
}
}

Instead of printing the key/value pairs by iterating over the Map. ent rySet as done in the
prior example, this example iterates over the entities in the Map. val ues collection.

i nport com sl eepycat. col | ections. Storedlterator;
inport java.util.lterator;
inport java.util. Set;

public class Sanple
{

private class PrintDatabase inplenments TransactionWrker
{
public void doWrk()
throws Exception
{
printVal ues("Parts",
views.getPartSet().iterator());
print Val ues(" Suppliers",
views. get SupplierSet().iterator());
printVal ues("Suppliers for Gty Paris",
vi ews. get Suppl i er ByGi t yMap() . dupl i cat es(
"Paris").iterator());
print Val ues(" Shi prent s",
vi ews. get Shi pnent Set ().iterator());
print Val ues(" Shipnents for Part P1",
vi ews. get Shi pment ByPart Map() . dupl i cat es(
new PartKey("P1")).iterator());
print Val ues(" Shiprents for Supplier S1",
vi ews. get Shi pnent BySuppl i er Map() . dupl i cat es(

9/22/2004

DB Collections Page 55

Using Entities with Collections

}

new SupplierKey("S1")).iterator());

The output of the example program is shown below.

Addi ng Suppliers
Adding Parts
Addi ng Shi pment s

- Parts ---
Part: nunber=P1 nane=Nut col or=Red wei ght=[12.0 grans] city=London
Part: nunber=P2 nane=Bolt col or=G een wei ght=[17.0 grams] city=Paris
Part: nunber=P3 nane=Screw col or =Bl ue wei ght=[17.0 grans] city=Rone
Part: nunber=P4 nane=Screw col or=Red wei ght=[14.0 grans] city=London
Part: nunber=P5 nane=Cam col or =Bl ue wei ght=[12.0 grans] city=Paris
Part: nunber=P6 nane=Cog col or=Red wei ght=[19.0 grans] city=London

- Suppliers ---
Suppl i er: nunber=S1 name=Snith status=20 city=London
Suppl i er: nunber=S2 name=Jones status=10 city=Paris
Supplier: nunber=S3 name=Bl ake status=30 city=Paris
Suppl i er: nunber=S4 name=Cl ark status=20 city=London
Suppl i er: nunber=S5 name=Adans status=30 city=Athens

- Suppliers for Gty Paris ---
Suppl i er: nunber=S2 name=Jones status=10 city=Paris

Suppl i er: nunber=S3 name=Bl ake status=30

city=Paris

- Shipnments ---
Shi pnent: part=P1 supplier=S1 quantity=300
Shi pnent: part=P1 supplier=S2 quantity=300
Shi pnent: part=P2 supplier=Sl quantity=200
Shi pnent: part=P2 supplier=S2 quantity=400
Shi pnent: part=P2 supplier=S3 quantity=200
Shi pnent: part=P2 supplier=S4 quantity=200
Shi pnent: part=P3 supplier=Sl quantity=400
Shi pnent: part=P4 supplier=Sl quantity=200
Shi pnent: part=P4 supplier=S4 quantity=300
Shi pnent: part=P5 supplier=Sl quantity=100
Shi pnent: part=P5 supplier=S4 quantity=400
Shi pnent: part=P6 supplier=Sl quantity=100

- Shipments for Part Pl ---
Shi pnent: part=P1 supplier=Sl quantity=300
Shi pnent: part=P1 supplier=S2 quantity=300

9/22/2004 DB Collections Page 56

Using Entities with Collections

--- Shipnents for

Shi prent :
Shi prent :
Shi prent :
Shi prent :
Shi prent :
Shi prent :

part=P1
part =P2
part=P3
part =P4
par t =P5
par t =P6

Supplier S1
suppl i er=S1
suppl i er=S1
suppl i er=S1
suppl i er=S1
suppl i er=S1
suppl i er=S1

quant it y=300
quantity=200
quant it y=400
quantity=200
quantity=100
quantity=100

9/22/2004

DB Collections

Page 57

Chapter 5. Using Tuples

Sleepycat Java Collections API tuples are sequences of primitive Java data types, for
example, integers and strings. The tuple format is a binary format for tuples that can be
used to store keys and/or values.

Tuples are useful as keys because they have a meaningful sort order, while serialized
objects do not. This is because the binary data for a tuple is written in such a way that
its raw byte ordering provides a useful sort order. For example, strings in tuples are
written with a null terminator rather than with a leading length.

Tuples are useful as keys or values when reducing the record size to a minimum is
important. A tuple is significantly smaller than an equivalent serialized object. However,
unlike serialized objects, tuples cannot contain complex data types and are not easily
extended except by adding fields at the end of the tuple.

Whenever a tuple format is used, except when the key or value class is a Java primitive
wrapper class, a tuple binding class must be implemented to map between the Java
object and the tuple fields. Because of this extra requirement, and because tuples are
not easily extended, a useful technique shown in this example is to use tuples for keys
and serialized objects for values. This provides compact ordered keys but still allows
arbitrary Java objects as values, and avoids implementing a tuple binding for each value
class.

Compare this example to the prior Entity example and you'll see that the Sanpl e class has
not changed. When changing a database format, while new bindings are needed to map
key and value objects to the new format, the application using the objects often does
not need to be modified.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Using the Tuple Format

Tuples are sequences of primitive Java values that can be written to, and read from, the
raw data bytes of a stored record. The primitive values are written or read one at a time
in sequence, using the Sleepycat Java Collections API Tupl el nput and Tupl eQut put classes.
These classes are very similar to the standard Java Dat al nput and Dat aQut put interfaces.
The primary difference is the binary format of the data, which is designed for sorting in
the case of tuples.

For example, to read and write a tuple containing two string values, the following code
snippets could be used.

i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

Tupl el nput i nput;
Tupl eQut put out put;

9/22/2004 DB Collections Page 58

Using Tuples with Key Creators

String partNumber = input.readString();
String supplierNunber = input.readString();

out put.writeString(partNunber);
out put.writeString(supplierNunber);

Since a tuple is defined as an ordered sequence, reading and writing order must match.
If the wrong data type is read (an integer instead of string, for example), an exception
may be thrown or at minimum invalid data will be read.

When the tuple format is used, bindings and key creators must read and write tuples using
the tuple API as shown above. This will be illustrated in the next two sections.

Using Tuples with Key Creators

Key creators were used in prior examples to extract index keys from value objects. The
keys were returned as deserialized key objects, since the serial format was used for keys.
In this example, the tuple format is used for keys and the key creators return keys by
writing information to a tuple. The differences between this example and the prior
example are:

o The Tupl eSeri al KeyCreat or base class is used instead of the Seri al Seri al KeyCr eat or
base class.

« For all key input and output parameters, the Tupl el nput and Tupl eQut put classes are
used instead of Chj ect (representing a deserialized object).

« Instead of returning a key output object, these methods call tuple write methods such
as Tupl eQut put. writeString.

In addition to writing key tuples, the Shi pment ByPar t KeyCr eat or and

Shi prent BySuppl i er KeyCr eat or classes also read the key tuple of the primary key. This

is because they extract the index key from fields in the Shipment's primary key. Instead
of calling getter methods on the Shi pnent Key object, as in prior examples, these methods
call Tupl el nput. readString. The Shi pment Key consists of two string fields that are read
in sequence.

The modified key creators are shown below: Suppli er ByCi t yKeyCreat or,
Shi pment ByPar t KeyCr eat or and Shi pment By Suppl i er KeyCr eat or .

i nport com sl eepycat. bi nd. seri al . Tupl eSeri al KeyCreat or;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class Sanpl eDat abase
{

private static class SupplierByCityKeyCreator
extends Tupl eSeri al KeyCreat or

9/22/2004 DB Collections Page 59

Using Tuples with Key Creators

{
private SupplierByGityKeyCreator(Storedd assCatal og catal og,
Cl ass val ued ass)
{
super (cat al og, val ued ass);
}
publ i c bool ean creat eSecondar yKey(Tupl el nput pri maryKeyl nput,
oj ect val uel nput ,
Tupl eQut put i ndexKeyQut put)
{
Suppl i erData supplierData = (SupplierData) val uel nput;
String city = supplierData.getGity();
if (city !'=null) {
i ndexKeyQut put. writeString(supplierData.getGity());
return true;
} else {
return fal se;
}
}
}

private static class ShipmentByPart KeyCreat or
extends Tupl eSeri al KeyCreat or

{
private Shipment ByPart KeyCreat or (St oredd assCat al og cat al og,
Cl ass val ued ass)
{
super (cat al og, val ued ass);
}
publ i c bool ean creat eSecondar yKey(Tupl el nput pri maryKeyl nput,
oj ect val uel nput ,
Tupl eQut put i ndexKeyQut put)
{
String partNumber = primaryKeyl nput.readString();
/1 don't bother reading the supplierNunber
i ndexKeyQut put. writeString(partNunber);
return true;
}
}

private static class ShipmentBySupplierKeyCreat or
extends Tupl eSeri al KeyCr eat or
{
private ShipmentBySuppl i er KeyCreat or (St oredd assCat al og cat al og,
Cl ass val ued ass)

{

super (cat al og, val ued ass);

9/22/2004 DB Collections Page 60

Creating Tuple Key Bindings

}

publ i c bool ean creat eSecondar yKey(Tupl el nput pri maryKeyl nput,
oj ect val uel nput ,
Tupl eQut put i ndexKeyQut put)

{
primaryKeyl nput.readString(); // skip the partNunmber
String supplierNunber = primaryKeylnput.readString();
i ndexKeyQut put. writeString(supplierNunber);
return true;

}

Creating Tuple Key Bindings

Serial bindings were used in prior examples as key bindings, and keys were stored as
serialized objects. In this example, a tuple binding is used for each key since keys will
be stored as tuples. Because keys are no longer stored as serialized objects, the Part Key,
Suppl i er Key and Shi pnent Key classes no longer implement the Seri al i zabl e interface
(this is the only change to these classes and is not shown below).

For the Part key, Suppl i er key, and Shi pnent key, the Sanpl eVi ews class was changed in
this example to create a custom Tupl eBi ndi ng instead of a Seri al Bi ndi ng. The custom
tuple key binding classes are defined further below.

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

public class SanpleVi ews

{

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)
{

C assCatal og catal og = db. get d assCatal og();
Ent ryBi ndi ng partKeyBi nding =
new Part KeyBi ndi ng();
EntityBindi ng partDataBinding =
new Part Bi ndi ng(catal og, PartData. cl ass);
Ent ryBi ndi ng suppl i er KeyBi nding =
new Suppl i er KeyBi ndi ng() ;
EntityBindi ng supplierDataBinding =
new Suppl i er Bi ndi ng(cat al og, Suppli erData.cl ass);
Ent ryBi ndi ng shi pment KeyBi ndi ng =
new Shi pnent KeyBi ndi ng() ;
EntityBi ndi ng shi pment Dat aBi ndi ng =
new Shi pnent Bi ndi ng(cat al og, Shi pnent Dat a. cl ass);

9/22/2004 DB Collections Page 61

Creating Tuple Key Bindings

}

Ent ryBi ndi ng cityKeyBinding =
Tupl eBi ndi ng. get Pri m tiveBindi ng(String.class);

For the City key, however, a custom binding class is not needed because the key class is
a primitive Java type, Stri ng. For any primitive Java type, a tuple binding may be created
using the Tupl eBi ndi ng. get Pri m ti veBi ndi ng static method.

The custom key binding classes, Part KeyBi ndi ng, Suppl i er KeyBi ndi ng and
Shi pment KeyBi ndi ng, are defined by extending the Tupl eBi ndi ng class. The Tupl eBi ndi ng
abstract class implements the Ent ryBi ndi ng interface, and is used for one-to-one bindings
between tuples and objects. Each binding class implements two methods for converting
between tuples and objects. Tuple fields are read using the Tupl el nput parameter and

written using the Tupl eQut put parameter.

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class SanpleVi ews

{
private static class PartKeyBinding extends Tupl eBi nding
{
private PartKeyBinding()
{
}
public Qbject entryToCbject (Tuplelnput input)
{
String nunber = input.readString();
return new Part Key(nunber);
}
public void object ToEntry(Qbject object, TupleCutput output)
{
Part Key key = (PartKey) object;
out put.writeString(key.get Number());
}
}
private static class SupplierKeyBinding extends Tupl eBinding
{
private SupplierKeyBinding()
{
}
9/22/2004 DB Collections Page 62

Creating Tuple-Serial Entity
Bindings

public Qoject entryToCbject (Tuplel nput input)

{
String nunber = input.readString();
return new Suppli erKey(number);
}
public void object ToEntry(Qbject object, TupleCutput output)
{
Suppl i erKey key = (SupplierKey) object;
out put.writeString(key.get Number());
}
}
private static class ShipnmentKeyBindi ng extends Tupl eBi nding
{
private Shi pment KeyBi ndi ng()
{
}
public Qoject entryToChject (Tuplel nput input)
{
String partNunber = input.readString();
String supplierNunber = input.readString();
return new Shi pment Key(part Number, supplierNunber);
}
public void object ToEntry(Qbject object, TupleCutput output)
{
Shi pment Key key = (Shi pnment Key) obj ect;
out put.writeString(key.getPartNunber());
out put.writeString(key.get SupplierNunber());
}

}
Creating Tuple-Serial Entity Bindings

In the prior example serial keys and serial values were used, and the Seri al Seri al Bi ndi ng
base class was used for entity bindings. In this example, tuple keys and serial values are
used and therefore the Tupl eSeri al Bi ndi ng base class is used for entity bindings.

As with any entity binding, a key and value is converted to an entity in the

Tupl eSeri al Bi ndi ng. ent ryToObj ect method, and from an entity to a key and value in the
Tupl eSeri al Bi ndi ng. obj ect ToKey and Tupl eSeri al Bi ndi ng. obj ect ToDat a methods. But
since keys are stored as tuples, not as serialized objects, key fields are read and written
using the Tupl el nput and Tupl eCut put parameters.

9/22/2004 DB Collections Page 63

Creating Tuple-Serial Entity
Bindings

The Sanpl eVi ews class contains the modified entity binding classes that were defined in
the prior example: Part Bi ndi ng, Suppl i er Bi ndi ng and Shi pment Bi ndi ng.

i nport com sl eepycat. bi nd. serial . Tupl eSeri al Bi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class SanpleVi ews

{
private static class PartBinding extends Tupl eSerial Bi ndi ng
{
private PartBindi ng(Cd assCatal og classCatal og, C ass dataC ass)
{
super (cl assCat al og, datad ass);
public Object entryToChject(Tuplelnput keylnput, Cbject datalnput)
{
String nunber = keylnput.readString();
PartData data = (PartData) datalnput;
return new Part(nunber, data.getName(), data.getColor(),
data.get\eight(), data.getGity());
}
publi ¢ voi d object ToKey(Chject object, TupleQutput output)
{
Part part = (Part) object;
output.witeString(part.getNunber());
publ i c bject objectToData(Chject object)
{
Part part = (Part) object;
return new PartData(part.get Nane(), part.getColor(),
part.get\Wight(), part.getCty());
}
}
private static class SupplierBinding extends Tupl eSerial Bi nding
{
private SupplierBinding(C assCatal og classCatal og, Cass datad ass)
{
super (cl assCat al og, datad ass);
}
public Object entryToChject(Tuplelnput keylnput, Cbject datalnput)
{
String nunber = keylnput.readString();
SupplierData data = (SupplierData) datalnput;
return new Supplier(nunmber, data.get Name(),
data. get Status(), data.getGity());
}

9/22/2004 DB Collections Page 64

Creating Tuple-Serial Entity

Bindings
public void object ToKey(Cbject object, TupleQutput output)
{
Supplier supplier = (Supplier) object;
out put.writeString(supplier.getNunber());
}
public oject objectToData(Chject object)
{
Supplier supplier = (Supplier) object;
return new SupplierData(supplier.getName(), supplier.getStatus(),
supplier.getCity());
}
}
private static class ShipnmentBinding extends Tupl eSerial Bi nding
{
private ShipnentBindi ng(C assCatal og cl assCatal og, C ass datad ass)
{
super (cl assCat al og, datad ass);
}
public oject entryToCbject(Tuplelnput keylnput, Cbject datal nput)
{
String partNumber = keylnput.readString();
String supplierNunber = keylnput.readString();
Shi pment Dat a data = (Shi pment Data) dat al nput;
return new Shi pment (partNunber, supplierNunber,
data. get Quantity());
public void object ToKey(Cbject object, TupleQutput output)
{
Shi pment shi pment = (Shi pment) object;
out put.writeString(shipnent.getPartNunber());
out put.writeString(shipnent.get SupplierNunber());
public Ooject objectToData(Chject object)
{
Shi pment shi pment = (Shi pment) object;
return new Shi pment Dat a(shi pnent. get Quantity());
}

9/22/2004 DB Collections Page 65

Using Sorted Collections

Using Sorted Collections

In general, no changes to the prior example are necessary to use collections having tuple
keys. Iteration of elements in a stored collection will be ordered by the sort order of the
tuples.

In addition to using the tuple format, the Dat abaseType. BTREE access method must be
used when creating the database. Dat abaseType. BTREE is used for the databases in all
examples. The Dat abaseType. HASH access method does not support sorted keys.

Although not shown in the example, all methods of the Sort edMap and Sort edSet interfaces
may be used with sorted collections. For example, submaps and subsets may be created.

The output of the example program shows that records are sorted by key value.

Addi ng Suppliers
Addi ng Parts
Addi ng Shi pment s

- Parts ---
Part: nunber=P1 nane=Nut col or=Red wei ght=[12.0 grans] city=London
Part: nunber=P2 nane=Bolt col or=G een wei ght=[17.0 grams] city=Paris
Part: nunber=P3 nane=Screw col or =Bl ue wei ght=[17.0 grans] city=Rone
Part: nunber=P4 nane=Screw col or=Red wei ght=[14.0 grans] city=London
Part: nunber=P5 nane=Cam col or =Bl ue wei ght=[12.0 grans] city=Paris
Part: nunber=P6 nane=Cog col or=Red wei ght=[19.0 grans] city=London

- Suppliers ---
Suppl i er: nunber=S1 name=Snith status=20 city=London
Suppl i er: nunber=S2 name=Jones status=10 city=Paris
Supplier: nunber=S3 name=Bl ake status=30 city=Paris
Suppl i er: nunber=S4 name=Cl ark status=20 city=London
Suppl i er: nunber=S5 name=Adans status=30 city=Athens

- Suppliers for Gty Paris ---
Suppl i er: nunber=S2 name=Jones status=10 city=Paris
Supplier: nunber=S3 name=Bl ake status=30 city=Paris

- Shipnments ---
Shi pnent: part=P1 supplier=Sl quantity=300
Shi pnent: part=P1 supplier=S2 quantity=300
Shi pnent: part=P2 supplier=Sl quantity=200
Shi pnent: part=P2 supplier=S2 quantity=400
Shi pnent: part=P2 supplier=S3 quantity=200
Shi pnent: part=P2 supplier=S4 quantity=200
Shi pnent: part=P3 supplier=Sl quantity=400
Shi pnent: part=P4 supplier=Sl quantity=200
Shi pnent: part=P4 supplier=S4 quantity=300
Shi pnent: part=P5 supplier=Sl quantity=100

9/22/2004

DB Collections

Page 66

Using Sorted Collections

Shi prent :
Shi prent :

par t =P5
par t =P6

--- Shipnents for

Shi prent :
Shi prent :

part=P1
part=P1

--- Shipnents for

Shi prent :
Shi prent :
Shi prent :
Shi prent :
Shi prent :
Shi prent :

part=P1
part =P2
part=P3
part =P4
par t =P5
par t =P6

suppl i er=%4
suppl i er=S1

Part P1 ---
suppl i er=S1
suppl i er=S2

Supplier S1
suppl i er=S1
suppl i er=S1
suppl i er=S1
suppl i er=S1
suppl i er=S1
suppl i er=S1

quant it y=400
quantity=100

quant it y=300
quant it y=300

quant it y=300
quantity=200
quant it y=400
quantity=200
quantity=100
quantity=100

9/22/2004

DB Collections

Page 67

Chapter 6. Using Serializable Entities

In the prior examples that used entities (the Entity and Tuple examples) you may have
noticed the redundancy between the serializable value classes and the entity classes. An
entity class by definition contains all properties of the value class as well as all properties
of the key class.

When using serializable values it is possible to remove this redundancy by changing the
entity class in two ways:

» Make the entity class serializable, so it can be used in place of the value class.
» Make the key fields transient, so they are not redundantly stored in the record.

The modified entity class can then serve double-duty: It can be serialized and stored as
the record value, and it can be used as the entity class as usual along with the Java
collections API. The Part Dat a, Suppl i er Dat a and Shi pnent Dat a classes can then be
removed.

Transient fields are defined in Java as fields that are not stored in the serialized form of
an object. Therefore, when an object is deserialized the transient fields must be explicitly
initialized. Since the entity binding is responsible for creating entity objects, it is the
natural place to initialize the transient key fields.

Note that it is not strictly necessary to make the key fields of a serializable entity class
transient. If this is not done, the key will simply be stored redundantly in the record's
value. This extra storage may or may not be acceptable to an application. But since we
are using tuple keys and an entity binding class must be implemented anyway to extract
the key from the entity, it is sensible to use transient key fields to reduce the record
size. Of course there may be a reason that transient fields are not desired; for example,
if an application wants to serialize the entity objects for other purposes, then using
transient fields should be avoided.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Using Transient Fields in an Entity Class

The entity classes in this example are redefined such that they can be used both as
serializable value classes and as entity classes. Compared to the prior example there are
three changes to the Part, Supplier and Shi pnent entity classes:

» Each class now implements the Seri al i zabl e interface.
« The key fields in each class are declared as transi ent.

» A package-private set Key() method is added to each class for initializing the transient
key fields. This method will be called from the entity bindings.

9/22/2004 DB Collections Page 68

Using Transient Fields in an
Entity Class

inport java.io.Serializable;

public class Part inplenents Serializable
{
private transient String nunber;
private String nane;
private String col or;
private Veight weight;
private String city;

public Part(String nunber, String name, String color, \eight weight,

String city)
{
this. nunber = nunber;
this.name = nane;
this.color = color;
this.weight = weight;
this.city = city;
}
final void setKey(String nunber)
{
this. nunber = nunber;
}
public final String getNunber()
{
return nunber;
}
public final String getName()
{
return nane;
}
public final String getCol or()
{
return color;
}
public final Weight getWeight()
{
return weight;
}
public final String getCity()
{
return city;
}

9/22/2004 DB Collections Page 69

Using Transient Fields in an
Entity Class

public String toString()

{
return "Part: number=" + nunber +
" name=" + nane +
" color=" + color +
" weight=" + weight +
"city=" +city +'.";
}

}

public class Supplier inplenents Serializable
{

private transient String nunber;

private String nane;

private int status;

private String city;

public Supplier(String nunber, String nane, int status, String city)

{
thi s. nunber = nunber;
this.name = name;
this.status = status;
this.city = city;
}
void setKey(String nunber)
{
thi s. nunber = nunber;
}
public final String getNunber()
{
return nunber;
}
public final String getName()
{
return nane;
}
public final int getStatus()
{
return status;
}
public final String getCity()
{

return city;

9/22/2004 DB Collections Page 70

Using Transient Fields in an
Entity Class

}
public String toString()
{
return "Supplier: nunber=" + nunber +
" name=" + name +
" status=" + status +
"city=" +city +'.";
}
}
public class Shipnent inplenments Serializable
{

private transient String partNunber;
private transient String supplierNunber;
private int quantity;

publ i ¢ Shipment (String partNumber, String supplierNunber, int quantity)

{
this. part Nunber = part Nunber;
this.supplierNumber = supplierNunber;
this.quantity = quantity;
}
void setKey(String partNunber, String supplierNunber)
{
this. part Nunber = part Nunber;
this.supplierNunber = supplierNunber;
}
public final String getPartNunmber ()
{
return partNumber;
}
public final String getSupplierNunber()
{
return supplierNunber;
}
public final int getQuantity()
{
return quantity;
}
public String toString()
{

return "Shipment: part=" + partNunber +
" supplier=" + supplierNumber +

9/22/2004 DB Collections Page 71

Using Transient Fields in an
Entity Binding

" quantity=" + quantity + '.'

Using Transient Fields in an Entity Binding

The entity bindings from the prior example have been changed in this example to use the
entity object both as a value object and an entity object.

Before, the entryTobj ect () method combined the deserialized value object with the
key fields to create a new entity object. Now, this method uses the deserialized object
directly as an entity, and initializes its key using the fields read from the key tuple.

Before, the obj ect ToDat a() method constructed a new value object using information in
the entity. Now it simply returns the entity. Nothing needs to be changed in the entity,
since the transient key fields won't be serialized.

i nport com sl eepycat . bi nd. seri al . O assCat al og;

public class SanpleVi ews

{
private static class PartBinding extends Tupl eSerial Bi ndi ng
{
private PartBindi ng(C assCatal og cl assCatal og, C ass dataC ass)
{
super (cl assCat al og, datad ass);
}
public oject entryToChject(Tuplelnput keylnput, Cbject datal nput)
{
String nunber = keylnput.readString();
Part part = (Part) datalnput;
part. set Key(nunber);
return part;
}
public void object ToKey(Cbject object, TupleQutput output)
{
Part part = (Part) object;
output.witeString(part.getNunber());
}
public oject objectToData(Cbject object)
{
return object;
}
}

9/22/2004 DB Collections Page 72

Using Transient Fields in an
Entity Binding

private static class SupplierBinding extends TupleSerial Bi nding

{

}

private SupplierBinding(C assCatal og classCatal og, C ass datad ass)
{

}

public oject entryToCbject(Tuplelnput keylnput, Cbject datal nput)
{

super (cl assCat al og, datad ass);

String nunber = keylnput.readString();
Supplier supplier = (Supplier) datalnput;
suppl i er. set Key(number) ;

return supplier;

}

public void object ToKey(Cbject object, TupleQutput output)
{

Supplier supplier = (Supplier) object;

out put.writeString(supplier.getNunber());

}
public oject objectToData(Chject object)
{
return object;
}

private static class ShipnmentBinding extends TupleSerial Bi nding

{

private ShipnmentBindi ng(C assCatal og cl assCatal og, C ass datad ass)
{

}

public oject entryToCbject(Tuplelnput keylnput, Cbject datal nput)
{

super (cl assCat al og, datad ass);

String partNumber = keylnput.readString();
String supplierNunber = keylnput.readString();
Shi pment shi pment = (Shipnment) datal nput ;

shi pnent . set Key(part Number, supplierNunber);
return shipnent;

}

public void object ToKey(Cbj ect object, TupleQutput output)
{

Shi pment shi pment = (Shi pment) object;

out put. writeString(shipnent.getPartNunber());

out put.writeString(shipnent.getSupplierNunber());

9/22/2004

DB Collections Page 73

Removing the Redundant Value

Classes
}
public oject objectToData(Chject object)
{
return object;
}

}
Removing the Redundant Value Classes

The Part Dat a, Suppl i er Dat a and Shi pnent Dat a classes have been removed in this example,
and the Part, Supplier and Shi pnent entity classes are used in their place.

The serial formats are created with the entity classes.

public class Sanpl eDat abase

{
publ i ¢ Sanpl eDat abase(String honmeDirectory)
throws Dat abaseException, FileNot FoundException
{
secConfig. set KeyCreat or (new Suppl i er ByCi t yKeyCr eat or (j avaCat al og,
Supplier.class));
secConfi g. set KeyCreat or (new Shi pnent ByPar t KeyCr eat or (j avaCat al og,
Shi prent . cl ass)) ;
secConfi g. set KeyCreat or (new Shi pnent BySuppl i er KeyCr eat or (j avaCat al og,
Shi prent . cl ass)) ;
}
}

The index key creator uses the entity class as well.

public class Sanpl eDat abase
{

private static class SupplierByCityKeyCreator
extends Tupl eSeri al KeyCr eat or

{
private SupplierByGityKeyCreator(C assCatal og catal og,

Cl ass val ued ass)

{
}

super (cat al og, val ued ass);

9/22/2004 DB Collections Page 74

Removing the Redundant Value
Classes

publ i c bool ean creat eSecondar yKey(Tupl el nput pri maryKeyl nput,
oj ect val uel nput ,
Tupl eQut put i ndexKeyQut put)

{
Supplier supplier = (Supplier) valuelnput;
String city = supplier.getCty();
if (city !'=null) {
i ndexKeyQut put. writeString(supplier.getGty());
return true;
} else {
return fal se;
}
}

9/22/2004 DB Collections Page 75

Chapter 7. Summary

In summary, the Sleepycat Java Collections API tutorial has demonstrated how to create
different types of bindings, as well as how to use the basic facilities of the Sleepycat Java
Collections API: the environment, databases, secondary indices, collections, and
transactions. The final approach illustrated by the last example program, Serializable
Entity, uses tuple keys and serial entity values. Hopefully it is clear that any type of
object-to-data binding may be implemented by an application and used along with standard
Java collections.

The following table summarizes the differences between the examples in the tutorial.

Example Key Value Entity Comments

The Basic Serial Serial No The shipment
Program program

(page 6)

Using Secondary |Serial Serial No Secondary
Indices indices

(page 32)

Using Entity Serial Serial Yes Combining the
Classes key and value in
(page 45) a single object
Using Tuples Tuple Serial Yes Compact ordered
(page 58) keys

Using Tuple Serial Yes One serializable
Serializable class for entities
Entities and values
(page 68)

Having completed this tutorial, you may want to explore how other types of bindings can
be implemented. The bindings shown in this tutorial are all external bindings, meaning
that the data classes themselves contain none of the binding implementation. It is also
possible to implement internal bindings, where the data classes implement the binding.

Internal bindings are called marshalled bindings in the Sleepycat Java Collections API,
and in this model each data class implements a marshalling interface. A single external
binding class that understands the marshalling interface is used to call the internal bindings
of each data object, and therefore the overall model and API is unchanged. To learn
about marshalled bindings, see the marshal and fact ory examples that came with your
DB distribution (you can find them in

<I NSTALL_DI R>exanpl es_j aval src/ con sl eepycat / exanpl es/ col | ecti ons/ shi p where

<I NSTALL_DI R> is the location where you unpacked your DB distribution). These examples
continue building on the example programs used in the tutorial. The Marshal program is
the next program following the Serializable Entity program, and the Factory program
follows the Marshal program. The source code comments in these examples explain their
differences.

9/22/2004 DB Collections Page 76

Appendix A. API Notes and
Details

This appendix contains information useful to the collections programmer that is too
detailed to easily fit into the format of a tutorial. Specifically, this appendix contains the
following information:

Using Data Bindings (page 77)

Using the Sleepycat Java Collections APl (page 81)

Using Stored Collections (page 84)

Serialized Object Storage (page 89)
Using Data Bindings

Data bindings determine how keys and values are represented as stored data (byte arrays)
in the database, and how stored data is converted to and from Java objects.

The selection of data bindings is, in general, independent of the selection of access
methods and collection views. In other words, any binding can be used with any access
method or collection. One exception to this rule is described under Record Number
Bindings (page 79) below.

|:| In this document, bindings are described in the context of their use for stored data in a
database. However, bindings may also be used independently of a database to operate on
an arbitrary byte array. This allows using bindings when data is to be written to a file or
sent over a network, for example.

9/22/2004 DB Collections Page 77

Using Data Bindings

Selecting Binding Formats

For the key and value of each stored collection, you may select one of the following types
of bindings.

Binding Format Ordered Description

Seri al Bi ndi ng No The data is stored using a
compact form of Java
serialization, where the class
descriptions are stored
separately in a catalog
database. Arbitrary Java
objects are supported.

Tupl eBi ndi ng Yes The data is stored using a
series of fixed length
primitive values or zero
terminated character arrays
(strings). Class/type
evolution is not supported.

Recor dNunber Bi ndi ng Yes The data is a 32-bit integer
stored in a
platform-dependent format.

Custom binding format User-defined The data storage format and
ordering is determined by the
custom binding
implementation.

As shown in the table above, the tuple format supports built-in ordering (without specifying
a custom comparator), while the serial format does not. This means that when a specific
key order is needed, tuples should be used instead of serial data. Alternatively, a custom
BTree comparator should be specified using Dat abaseConfi g. set Bt r eeConpar at or () . Note
that a custom BTree comparator will usually execute more slowly than the default
byte-by-byte comparison. This makes using tuples an attractive option, since they provide
ordering along with optimal performance.

The tuple binding uses less space and executes faster than the serial binding. But once a
tuple is written to a database, the order of fields in the tuple may not be changed and
fields may not be deleted. The only type evolution allowed is the addition of fields at the
end of the tuple, and this must be explicitly supported by the custom binding
implementation.

The serial binding supports the full generality of Java serialization including type evolution.
But serialized data can only be accessed by Java applications, its size is larger, and its
bindings are slower to execute.

9/22/2004 DB Collections Page 78

Using Data Bindings

Record Number Bindings

Any use of an access method with record number keys, and therefore any use of a stored
list view, requires using Recor dNunber Bi ndi ng as the key binding. Since Berkeley DB stores
record number keys using a platform-dependent byte order, Recor dNunber Bi ndi ng is
needed to store record numbers properly. See the Berkeley DB Programmer's Reference
Guide for more information on storing DB record numbers.

|:| You may not use Recor dNunber Bi ndi ng except with record number keys, as determined by
the access method. Using Recor dNunber Bi ndi ng in other cases will create a database that
is not portable between platforms. When constructing the stored collection, the Sleepycat
Java Collections API will throw an | | | egal Argunent Excepti on in such cases.

Selecting Data Bindings

There are two types of binding interfaces. Simple entry bindings implement the

Ent r yBi ndi ng interface and can be used for key or value objects. Entity bindings implement
the Enti tyBi ndi ng interface and are used for combined key and value objects called
entities.

Simple entry bindings map between the key or value data stored by Berkeley DB and a
key or value object. This is a simple one-to-one mapping.

Simple entry bindings are easy to implement and in some cases require no coding. For
example, a Seri al Bi ndi ng can be used for keys or values without writing any additional
code. A tuple binding for a single-item tuple can also be used without writing any code;
see the Tupl eBi ndi ng. get PrinitiveBi ndi ng() method.

Entity bindings must divide an entity object into its key and value data, and then combine
the key and value data to re-create the entity object. This is a two-to-one mapping.

Entity bindings are useful when a stored application object naturally has its primary key
as a property, which is very common. For example, an Employee object would naturally
have an EmployeeNumber property (its primary key) and an entity binding would then be
needed. Of course, entity bindings are more complex to implement, especially if their
key and data formats are different.

Note that even when an entity binding is used a key binding is also usually needed. For
example, a key binding is used to create key objects that are passed to the Map. get ()
method. A key object is passed to this method even though it may return an entity that
also contains the key.

9/22/2004 DB Collections Page 79

Using Data Bindings

Implementing Bindings

There are two ways to implement bindings. The first way is to create a binding class that
implements one of the two binding interfaces, Ent ryBi ndi ng or Enti t yBi ndi ng. For tuple
bindings and serial bindings there are a number of abstract classes that make this easier.
For example, you can extend Tupl eBi ndi ng to implement a simple binding for a tuple key
or value. Abstract classes are also provided for entity bindings and are named after the
format names of the key and value. For example, you can extend Tupl eSeri al Bi ndi ng to
implement an entity binding with a tuple key and serial value.

Another way to implement bindings is with marshalling interfaces. These are interfaces
which perform the binding operations and are implemented by the key, value or entity
classes themselves. With marshalling you use a binding which calls the marshalling interface
and you implement the marshalling interface for each key, value or entity class. For
example, you can use Tupl eMar shal | edBi ndi ng along with key or value classes that
implement the Marshal | edTupl eEnt ry interface.

Using Bindings

Bindings are specified whenever a stored collection is created. A key binding must be
specified for map, key set and entry set views. A value binding or entity binding must be
specified for map, value set and entry set views.

Any number of bindings may be created for the same stored data. This allows multiple
views over the same data. For example, a tuple might be bound to an array of values or
to a class with properties for each object.

It is important to be careful of bindings that only use a subset of the stored data. This
can be useful to simplify a view or to hide information that should not be accessible.
However, if you write records using these bindings you may create stored data that is
invalid from the application’s point of view. It is up to the application to guard against
this by creating a read-only collection when such bindings are used.

Secondary Key Creators

Secondary Key Creators are needed whenever database indices are used. For each
secondary index (Secondar yDat abase) a key creator is used to derive index key data from
key/value data. Key creators are objects whose classes implement the Secondar yKeyCr eat or
interface.

Like bindings, key creators may be implemented using a separate key creator class or
using a marshalling interface. Abstract key creator classes and marshalling interfaces are
provided in the com.sleepycat.bind.tuple and com.sleepycat.bind.serial packages.

Unlike bindings, key creators fundamentally operate on key and value data, not necessarily
on the objects derived from the data by bindings. In this sense key creators are a part of
a database definition, and may be independent of the various bindings that may be used
to view data in a database. However, key creators are not prohibited from using higher
level objects produced by bindings, and doing so may be convenient for some applications.

9/22/2004 DB Collections Page 80

Using the Sleepycat Java
Collections API

For example, marshalling interfaces, which are defined for objects produced by bindings,
are a convenient way to define key creators.

Using the Sleepycat Java Collections API

An Envi ronnment manages the resources for one or more data stores. A Dat abase object
represents a single database and is created via a method on the environment object.
Secondar yDat abase objects represent an index associated with a primary database. An
access method must be chosen for each database and secondary database. Primary and
secondary databases are then used to create stored collection objects, as described in
Using Stored Collections (page 84).

Using Transactions

Once you have an environment, one or more databases, and one or more stored collections,
you are ready to access (read and write) stored data. For a transactional environment,
a transaction must be started before accessing data, and must be committed or aborted
after access is complete. The Sleepycat Java Collections API provides several ways of
managing transactions.

The recommended technique is to use the Transacti onRunner class along with your own
implementation of the Transacti onWrker interface. Transacti onRunner will call your
Transact i onWr ker implementation class to perform the data access or work of the
transaction. This technique has the following benefits:

« Transaction exceptions will be handled transparently and retries will be performed
when deadlocks are detected.

» The transaction will automatically be committed if your Transact i on\r ker . doWr k()
method returns normally, or will be aborted if doWrk() throws an exception.

o TransactionRunner can be used for non-transactional environments as well, allowing
you to write your application independently of the environment.

If you don't want to use Transacti onRunner, the alternative is to use the
Current Transacti on class.

1. Obtain a CurrentTransaction instance by calling the Current Transacti on. get | nst ance
method. The instance returned can be used by all threads in a program.

2. Use Current Transaction. begi nTransaction(),
Current Transact i on. comm t Transaction() and
Current Transact i on. abort Transacti on() to directly begin, commit and abort
transactions.

If you choose to use CurrentTransaction directly you must handle the Deadl ockExcepti on
exception and perform retries yourself. Also note that CurrentTransaction may only be
used in a transactional environment.

9/22/2004 DB Collections Page 81

Using the Sleepycat Java
Collections API

The Sleepycat Java Collections APl supports nested transactions. If

Transacti onRunner.run(com sl eepycat. col | ections. Transacti on\Wr ker) or

Current Transact i on. begi nTransacti on(), is called while another transaction is active,
a child transaction is created. When

Transact i onRunner. run(com sl eepycat. col | ections. Transact i on\r ker) returns, or when
Current Transaction. commi t Transaction() or Current Transacti on. abort Transacti on()
is called, the parent transaction becomes active again. Note that because only one
transaction is active per-thread, it is impossible to accidentally use a parent transaction
while a child transaction is active.

The Sleepycat Java Collections API supports transaction auto-commit. If no transaction
is active and a write operation is requested for a transactional database, auto-commit is
used automatically.

The Sleepycat Java Collections API also supports transaction dirty-read via the

St oredCol | ecti ons class. When dirty-read is enabled for a collection, data will be read
that has been modified by another transaction but not committed. Using dirty-read can
improve concurrency since reading will not wait for other transactions to complete. For
a non-transactional container, dirty-read has no effect. See St oredCol | ecti ons for how
to create a dirty-read collection.

Transaction Rollback

When a transaction is aborted (or rolled back) the application is responsible for discarding
references to any data objects that were modified during the transaction. Since the
Sleepycat Java Collections API treats data by value, not by reference, neither the data
objects nor the Sleepycat Java Collections APl objects contain status information indicating
whether the data objects are 1- in sync with the database, 2- dirty (contain changes that
have not been written to the database), 3- stale (were read previously but have become
out of sync with changes made to the database), or 4- contain changes that cannot be
committed because of an aborted transaction.

For example, a given data object will reflect the current state of the database after
reading it within a transaction. If the object is then modified it will be out of sync with
the database. When the modified object is written to the database it will then be in sync
again. But if the transaction is aborted the object will then be out of sync with the
database. References to objects for aborted transactions should no longer be used. When
these objects are needed later they should be read fresh from the database.

When an existing stored object is to be updated, special care should be taken to read the
data, then modify it, and then write it to the database, all within a single transaction.
If a stale data object (an object that was read previously but has since been changed in
the database) is modified and then written to the database, database changes may be
overwritten unintentionally.

When an application enforces rules about concurrent access to specific data objects or

all data objects, the rules described here can be relaxed. For example, if the application
knows that a certain object is only modified in one place, it may be able to reliably keep
a current copy of that object. In that case, it is not necessary to reread the object before

9/22/2004 DB Collections Page 82

Using the Sleepycat Java

Collections API

updating it. That said, if arbitrary concurrent access is to be supported, the safest approach
is to always read data before modifying it within a single transaction.

Similar concerns apply to using data that may have become stale. If the application
depends on current data, it should be read fresh from the database just before it is used.

Selecting Access Methods

For each data store and secondary index, you must choose from one of the access methods
in the table below. The access method determines not only whether sorted keys or
duplicate keys are supported, but also what types of collection views may be used and
what restrictions are imposed on the collection views.

Access Method |Ordered |Duplicates|Record Database |Dat abaseConfi g Method
Numbers |Type
BTREE-UNIQUE |Yes No No BTREE None
BTREE-DUP Yes Yes, No BTREE set Unsort edDupl i cat es
Unsorted
BTREE-DUPSORT |Yes Yes, No BTREE set Sort edDupl i cat es
Sorted
BTREE-RECNUM |Yes No Yes, BTREE set Bt reeRecor dNunber s
Renumbered
HASH-UNIQUE |No No No HASH None
HASH-DUP No Yes, No HASH set Unsort edDupl i cat es
Unsorted
HASH-DUPSORT [No Yes, No HASH set Sort edDupl i cat es
Sorted
QUEUE Yes No Yes, Fixed |QUEUE None
RECNO Yes No Yes, Fixed |RECNO None
RECNO-RENUMBER | Yes No Yes, RECNO set Renunbering
Renumbered

Please see the Berkeley DB Programmer’s Reference Guide for more information on access
method configuration.

Access Method Restrictions

The restrictions imposed by the access method on the database model are:

« If keys are ordered then data may be enumerated in key order and key ranges may be
used to form subsets of a data store. The Sort edVap and Sort edSet interfaces are
supported for collections with ordered keys.

« If duplicates are allowed then more than one value may be associated with the same
key. This means that the data store cannot be strictly considered a map — it is really

9/22/2004

DB Collections

Page 83

Using Stored Collections

a multi-map. See Using Stored Collections (page 84) for implications on the use of
the collection interfaces.

If duplicate keys are allowed for a data store then the data store may not have
secondary indices.

For secondary indices with duplicates, the duplicates must be sorted. This restriction
is imposed by the Sleepycat Java Collections API.

With sorted duplicates, all values for the same key must be distinct.
If duplicates are unsorted, then values for the same key must be distinct.

If record number keys are used, the the number of records is limited to the maximum
value of an unsigned 32-bit integer.

If reocrd number keys are renumbered, then standard List add/remove behavior is
supported but concurrency/performance is reduced.

See Using Stored Collections (page 84) for more information on how access methods
impact the use of stored collections.

Using Stored Collections

When a stored collection is created it is based on either a Dat abase or a Secondar yDat abase.
When a database is used, the primary key of the database is used as the collection key.
When a secondary database is used, the index key is used as the collection key. Indexed
collections can be used for reading elements and removing elements but not for adding
or updating elements.

Stored Collection and Access Methods

The use of stored collections is constrained in certain respects as described below. Most
of these restrictions have to do with Li st interfaces; for Map interfaces, most all access
modes are fully supported since the Berkeley DB model is map-like.

Sort edSet and Sort edMap interfaces may only be used if keys are ordered. This means
ordered keys are required for creating a St or edSor t edEnt rySet, St or edSort edKeySet ,
St or edSor t edMap, or St oredSort edVal ueSet .

All iterators for stored collections implement the Li stIterator interface as well as
the Iterator interface. Listlterator. hasPrevi ous() and Listlterator. previous()
work in all cases. However, the following Li st | t er at or method behavior is dependent
on the access method.

o Listlterator.nextlndex() and Listlterator. previouslndex() only work when
record number keys are used, and throw Unsuppor t edQper at i onExcept i on otherwise.

o Listlterator.add() inserts before the current position and renumbers following
keys if the RECNO-RENUMBER access method is used.

9/22/2004

DB Collections Page 84

Using Stored Collections

e For all access methods other than RECNO-RENUMBER:

o Listlterator.add() throws UnsupportedQperationExcepti on if duplicates are
not allowed.

o Listlterator.add() inserts a duplicate before the current position if duplicates
are unsorted.

o Listlterator.add() inserts a duplicate in sorted order if duplicates are sorted.
o Listlterator.set() throws UnsupportedQperationExcepti on if sorted duplicates
are configured, since updating with sorted duplicates would change the iterator
position.
o Map. Entry. set Val ue() throws Unsupport edQper at i onExcept i on if duplicates are sorted.
e Only the access methods that use a record number key may be used with a Li st view.

» To create a stored List that supports the Li st. add() method, only the
RECNO-RENUMBER access method may be used.

« For List access methods that do not support Li st. add() (RECNO, QUEUE, and
BTREE-RECNUM):

e List.add() andListlterator.add() always throw Unsupport edQperati onExcepti on.

o List.remove() and Listlterator.renmve() do not cause list indices to be
renumbered. However, iterators will skip the removed values.

For these access methods, stored Lists are most useful as read-only collections where
indices are not required to be sequential.

» When duplicates are allowed the Col | ecti on interfaces are modified in several ways
as described in the next section.

Stored Collections Versus Standard Java Collections

Stored collections have the following differences with the standard Java collection
interfaces. Some of these are interface contract violations.

The Java collections interface does not support duplicate keys (multi-maps or multi-sets).
When the access method allows duplicate keys, the collection interfaces are defined as
follows.

» Map.entrySet () may contain multiple Map. Entry objects with the same key.
o Map. keySet () always contains unique keys, it does not contain duplicates.

o Map. val ues() contains all values including the values associated with duplicate keys.

9/22/2004 DB Collections Page 85

Using Stored Collections

Map. put () appends a duplicate if the key already exists rather than replacing the
existing value, and always returns null.

Map. remove() removes all duplicates for the specified key.
Map. get () returns the first duplicate for the specified key.

St or edMap. dupl i cat es() is an additional method for returning the values for a given
key as a Col | ecti on.

Other differences are:

All iterators for stored collections must be explicitly closed with
Storedlterator.close(). The static method
Storedlterator.close(java.util.lterator) allows calling close for all iterators
without harm to iterators that are not from stored collections, and also avoids casting.
If a stored iterator is not closed, unpredictable behavior including process death may
result.

Collection.size() and Map.size() always throws Unsuppor t edOper at i onExcepti on. This
is because the number of records in a database cannot be determined reliably or
cheaply.

Because the size() method cannot be used, the bulk operation methods of standard
Java collections cannot be passed stored collections as parameters, since the
implementations rely on size(). However, the bulk operation methods of stored
collections can be passed standard Java collections as parameters.

storedCol | ection. addAl | (st andardCol | ecti on) is allowed while

standardCol | ection. addAl | (st oredCol | ecti on) is not allowed. This restriction applies
to the standard collection constructors that take a Collection parameter (copy
constructors), the Map.putAll() method, and the following Collection methods: addAll(),
containsAll(), removeAll() and retainAll().

The Li stlterator. next|ndex() method returns | nt eger. MAX_VALUE for stored lists
when positioned at the end of the list, rather than returning the list size as specified
by the Listlterator interface. Again, this is because the database size is not available.

Conpar at or objects cannot be used and the Sort edMap. conparat or() and

Sort edSet . conpar at or () methods always return null. The Conpar abl e interface is not
supported. However, Comparators that operate on byte arrays may be specified using
Dat abaseConfi g. set Bt r eeConpar at or .

The bj ect. equal s() method is not used to determine whether a key or value is
contained in a collection, to locate a value by key, etc. Instead the byte array
representation of the keys and values are used. However, the equals() method is called
for each key and value when comparing two collections for equality. It is the
responsibility of the application to make sure that the equals() method returns true
if and only if the byte array representations of the two objects are equal. Normally
this occurs naturally since the byte array representation is derived from the object’s
fields.

9/22/2004

DB Collections Page 86

Using Stored Collections

Other Stored Collection Characteristics

The following characteristics of stored collections are extensions of the definitions in the
java. util package. These differences do not violate the Java collections interface
contract.

All stored collections are thread safe (can be used by multiple threads concurrently)
whenever the Berkeley DB Concurrent Data Store or Transactional Data Store
environment is used. Locking is handled by the Berkeley DB environment. To access
a collection from multiple threads, creation of synchronized collections using the
Col | ections class is not necessary except when using the Data Store environment.
Iterators, however, should always be used only by a single thread.

All stored collections may be read-only if desired by passing false for the writeAllowed
parameter of their constructor. Creation of immutable collections using the Col | ecti ons
class is not necessary.

A stored collection is partially read-only if a secondary index is used. Specifically,
values may be removed but may not be added or updated. The following methods will
throw Unsupport edQper at i onExcept i on when an index is used: Col | ecti on. add(),
List.set(), Listlterator.set() and Map. Entry. set Val ue().

Sort edMap. entrySet () and Sort edMap. keySet () return a SortedSet, not just a Set as
specified in Java collections interface. This allows using the Sort edSet methods on
the returned collection.

Sort edMap. val ues() returns a SortedSet, not just a Col | ecti on, whenever the keys
of the map can be derived from the values using an entity binding. Note that the
sorted set returned is not really a set if duplicates are allowed, since it is technically
a collection; however, the SortedSet methods (for example, subSet()), can still be
used.

For SortedSet and SortedMap views, additional subSet() and subMap() methods are
provided that allow control over whether keys are treated as inclusive or exclusive
values in the key range.

Keys and values are stored by value, not by reference. This is because objects that

are added to collections are converted to byte arrays (by bindings) and stored in the
database. When they are retrieved from the collection they are read from the database
and converted from byte arrays to objects. Therefore, the object reference added to
a collection will not be the same as the reference later retrieved from the collection.

A runtime exception, Runt i neExcepti onW apper, is thrown whenever database
exceptions occur which are not runtime exceptions. The

Runt i meExcept i onW apper . get Cause() method can be called to get the underlying
exception.

All iterators for stored collections implement the Li st1terator interface as well as
the Iterator interface. This is to allow use of the List|terator. hasPrevi ous() and

9/22/2004

DB Collections Page 87

Using Stored Collections

Li stlterator. previous() methods, which work for all collections since Berkeley DB
provides bidirectional cursors.

All stored collections have a St oredCol | ecti on. i t erat or (bool ean) method that allows
creating a read-only iterator for a writable collection. For the standard
Collection.iterator() method, the iterator is read-only only when the collection is
read-only. Read-only iterators are important for using the Berkeley DB Concurrent
Data Store environment, since only one write cursors may be open at one time.

Iterator stability for stored collections is greater than the iterator stability defined
by the Java collections interfaces. Stored iterator stability is the same as the cursor
stability defined by Berkeley DB.

When an entity binding is used, updating (setting) a value is not allowed if the key in
the entity is not equal to the original key. For example, calling Map. put () is not allowed
when the key parameter is not equal to the key of the entity parameter. Map. put (),
List.set(), Listlterator.set(), and Map. Entry. set Val ue() will throw

Il egal Argunent Excepti on in this situation.

Adding and removing items from stored lists is not allowed for sublists. This is simply
an unimplemented feature and may be changed in the future. Currently for sublists
the following methods throw Unsupport edQper ati onException: List.add(),

Li st.remove(), Listlterator.add() and Listlterator.renove().

The StoredLi st. append(]j ava. | ang. Obj ect) and St or edMap. append(j ava. | ang. Ovj ect)
extension methods allows adding a new record with an automatically assigned key.
Record number assignment by the database itself is supported for QUEUE, RECNO and
RECNO-RENUMBER databases. An application-defined Pri mar yKeyAssi gner is used to
assign the key value.

Why Java Collections for Berkeley DB

The Java collections interface was chosen as the best Java API for DB given these
requirements:

1.

Provide the Java developer with an API that is as familiar and easy to use as possible.

2. Provide access to all, or a large majority, of the features of the underlying Berkeley
DB storage system.

3. Compared to the DB API, provide a higher-level API that is oriented toward Java
developers.

4. For ease of use, support object-to-data bindings, per-thread transactions, and some
traditional database features such as foreign keys.

5. Provide a thin layer that can be thoroughly tested and which does not significantly
impact the reliability and performance of DB.

9/22/2004 DB Collections Page 88

Serialized Object Storage

Admittedly there are several things about the Java Collections API that don't quite fit
with DB or with any transactional database, and therefore there are some new rules for
applying the Java Collections API. However, these disadvantages are considered to be
smaller than the disadvantages of the alternatives:

* A new API not based on the Java Collections API could have been designed that maps
well to DB but is higher-level. However, this would require designing an entirely new
model. The exceptions for using the Java Collections API are considered easier to learn
than a whole new model. A new model would also require a long design stabilization
period before being as complete and understandable as either the Java Collections
API or the DB API.

« The ODMG API or another object persistence API could have been implemented on top
of DB. However, an object persistence implementation would add much code and
require a long stabilization period. And while it may work well for applications that
require object persistence, it would probably never perform well enough for many
other applications.

Serialized Object Storage

Serialization of an object graph includes class information as well as instance information.
If more than one instance of the same class is serialized as separate serialization operations
then the class information exists more than once. To eliminate this inefficiency the

St or edC assCat al og class will store the class format for all database records stored using
a Seri al Bi ndi ng. Refer to the shi p sample code for examples (the class Sanpl eDat abase
in

exanpl es_j ava/ src/ cont sl eepycat/ exanpl es/ col | ecti ons/ shi p/ basi ¢/ Sanpl eDat abase. j ava
is a good place to start).

9/22/2004 DB Collections Page 89

	Berkeley DB Collections Tutorial
	Table of Contents
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction
	Features
	Developing a Sleepycat Collections Application
	Tutorial Introduction

	Chapter 2. The Basic Program
	Defining Serialized Key and Value Classes
	Opening and Closing the Database Environment
	Opening and Closing the Class Catalog
	Opening and Closing Databases
	Creating Bindings and Collections
	Implementing the Main Program
	Using Transactions
	Adding Database Items
	Retrieving Database Items
	Handling Exceptions

	Chapter 3. Using Secondary Indices
	Opening Secondary Key Indices
	More Secondary Key Indices
	Creating Indexed Collections
	Retrieving Items by Index Key

	Chapter 4. Using Entity Classes
	Defining Entity Classes
	Creating Entity Bindings
	Creating Collections with Entity Bindings
	Using Entities with Collections

	Chapter 5. Using Tuples
	Using the Tuple Format
	Using Tuples with Key Creators
	Creating Tuple Key Bindings
	Creating Tuple-Serial Entity Bindings
	Using Sorted Collections

	Chapter 6. Using Serializable Entities
	Using Transient Fields in an Entity Class
	Using Transient Fields in an Entity Binding
	Removing the Redundant Value Classes

	Chapter 7. Summary
	Appendix A. API Notes and Details
	Using Data Bindings
	Selecting Binding Formats
	Record Number Bindings
	Selecting Data Bindings
	Implementing Bindings
	Using Bindings
	Secondary Key Creators

	Using the Sleepycat Java Collections API
	Using Transactions
	Transaction Rollback
	Selecting Access Methods
	Access Method Restrictions

	Using Stored Collections
	Stored Collection and Access Methods
	Stored Collections Versus Standard Java Collections
	Other Stored Collection Characteristics
	Why Java Collections for Berkeley DB

	Serialized Object Storage

